

K24U 1624

Reg. No.:	
-----------	--

Name :

Second Semester B.Sc. Degree (CBCSS – OBE-Regular/Supplementary/ Improvement) Examination, April 2024 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 2C02 MAT-CS : Mathematics for Computer Science – II

Time : 3 Hours

Max. Marks: 40

UNIT – I

Short answer type. Answer **any 4** questions. **Each** question carries **1** mark. (4×1=4)

- 1. Find the value of $f(x, y, z) = \sqrt{x^2 y^3 + 3z}$ at the point (4, 0, -4).
- 2. Find $\lim_{(x, y) \to (3, 4)} \sqrt{x^2 + y^2 1}$.
- 3. Evaluate ∫ sin³ x dx.
- 4. Define a line in polar co-ordinates.
- 5. When can you say that a matrix is diagonalizable?

UNIT – II

Short essay type. Answer any 7 questions. Each question carries 2 marks. (7×2=14)

6. Find the domain and range of the function $f(x, y, z) = xy \ln z$.

7. If
$$f(x, y) = x + y$$
, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

- 8. Find $\frac{dw}{dt}$ if w = xy + z, x = cost, y = sint, z = t. What is the derivative's value at $t = \frac{\pi}{2}$.
- 9. Evaluate $\int_{0}^{\pi/4} \sin^4 2x dx$.

K24U 1624

- 10. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^5 x \, dx$.
- 11. Evaluate $\int_{-2}^{2} (x^4 4x^2 + 6) dx$.
- 12. Find the average value of $z = f(x, y) = x \cos xy$ over the rectangle $\mathsf{R}: 0 \le \mathsf{x} \le \pi, 0 \le \mathsf{y} \le \mathsf{1}.$
- 13. When can you say that a quadratic form is negative definite?
- 14. Let $A = \begin{bmatrix} 3 & 4 \\ 6 & 2 \end{bmatrix}$ is the coefficient matrix. Find the symmetric coefficient matrix C.
- 15. Show that the matrices $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$, and $B = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$ are similar.

Essay type. Answer any 4 questions. Each question carries 3 marks. $(4 \times 3 = 12)$

16. Describe the level surfaces of $f(x, y, z) = z^2 - x^2 - y^2$.

- 17. Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^{2})^{4}}$. 18. Evaluate $\int_{0}^{\pi/6} \cos^{6} 3\theta \sin^{2} 6\theta \, d\theta$.
- 19. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- Find the polar equivalent of the curve whose Cartesian equation is $x^2 y^2 = 1$. 20.
- 21. Find a linearly independent eigenvectors of the matrix $\begin{bmatrix} 0 & 16 \\ 4 & 0 \end{bmatrix}$ and diagonalize it.
- 22. Prove that 0 is a characteristic root of a matrix if and only if the matrix is singular.

-2-

-3-

UNIT – IV

Long essay type. Answer any 2 questions. Each question carries 5 marks. (2×5=10)

- 23. If $u = \sin^{-1} \frac{x + 2y + 3z}{x^8 + y^8 + z^8}$, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$.
- 24. Evaluate ∫ tan⁶x dx.
- 25. Evaluate $\int_{1}^{3} \int_{\frac{1}{x}}^{1} \int_{0}^{\sqrt{xy}} xyz \, dz \, dy \, dx$.
- 26. Find the characteristic roots of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and then verify Cayley Hamilton theorem. Also express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as a linear polynomial in A.

THUR UNI