

Reg. No.:....

Name :

Second Semester B.Sc. Degree (CBCSS – OBE-Regular/Supplementary/ Improvement) Examination, April 2024 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 2C02 MAT-PH: Mathematics for Physics – II

Time: 3 Hours Max. Marks: 40

UNIT – I

Short answer type. Answer any 4 questions. Each question carries 1 mark.

 $(4 \times 1 = 4)$

- 1. Find the natural domain of the function $z = \sqrt{3x^2 + 5y^2}$.
- 2. Find the degree of the homogeneous function $f(x, y) = x^n \sin \frac{y}{x}$.
- Evaluate ∫ sin⁵ xdx .
- 4. Find the Cartesian equivalent of the Polar equation $r \cos \theta = 2$.
- 5. Define characteristic polynomial of a matrix A.

UNIT - II

Short essay type. Answer any 7 questions. Each question carries 2 marks.

 $(7 \times 2 = 14)$

- 6. Show that the function $f(x, y) = x\sqrt{3} 5y^2$ is continuous every where in the plane.
- 7. Verify Euler's theorem for $z = ax^2 + 2hxy + by^2$.
- 8. Find $\frac{dz}{dt}$ using chain rule, when z = xy with x = cost and y = sin t.
- 9. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^4 \theta \ d\theta$.
- 10. Evaluate $\int_0^{\pi/2} \cos^2 \theta \ d\theta$.

K24U 1620

-2-

- 11. Evaluate $\int_{\pi/4}^{\pi/2} \cot \theta \csc^2 \theta d\theta$.
- 12. Graph the sets of points whose polar coordinates satisfy the following conditions $1 \le r \le 2$ and $0 \le \theta \le \frac{\pi}{2}$.
- 13. Write the Cartesian equation of the polar equation $r \cos \theta = -4$.
- 14. Find the eigen values of the matrix $A = \begin{bmatrix} 10 & 3 \\ 4 & 6 \end{bmatrix}$.
- 15. Obtain the quadratic form associated with the matrix $A = \begin{bmatrix} 1 & 4 \\ 4 & -2 \end{bmatrix}$.
- 16. State Cayley-Hamilton Theorem.

Essay type. Answer any 4 questions. Each question carries 3 marks. (4×3=12)

- 17. Describe the level surfaces of $f(x, y, z) = x^2 + y^2 + z^2$.
- 18. Evaluate $\int_{0}^{a} \frac{x^4 dx}{\sqrt{a^2 x^2}}.$
- 19. Show that $\int_{0}^{a} x^{2} (a^{2} x^{2})^{3/2} dx = \frac{\pi a^{6}}{32}$.
- 20. The line segment x = 1 y, $0 \le y \le 1$, is revolved about the y axis to generate a cone. Find its lateral surface area.
- 21. Find the length of the cardioid $r = 1 \cos\theta$.
- 22. Find the eigen values and corresponding eigen vectors of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.
- 23. Prove that the eigen values of a diagonal matrix are the same as its diagonal elements.

-3-

Long essay type. Answer any 2 questions. Each question carries 5 marks.

 $(2 \times 5 = 10)$

24. If
$$z = f(x + ct) + \phi$$
 (x = ct), prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$.

- 25. Evaluate ∫cosec⁵x dx.
- 26. The line segment x = 1 y, $0 \le y \le 1$, is revolved about the y-axis to generate the cone in figure. Find its lateral surface area (which excludes the base area).
- 27. Diagonalize the matrix $A = \begin{bmatrix} 1 & -6 \\ 2 & 2 \end{bmatrix}$.

