Reg. No. :	
Name :	

IV Semester B.Sc. Degree (C.B.C.S.S. - Supplementary/One Time Mercy Chance) Examination, April 2024 (2014 to 2018 Admissions)

COMPLEMENTARY COURSE IN MATHEMATICS 4C04 MAT-CS: Mathematics for Computer Science – IV

Time: 3 Hours Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each: (4×1=4)

- 1. Give an example of a scalar field.
- 2. Define curvature of a curve C.
- 3. Define a line integral over a vector function.
- 4. Define forward difference operator.

SECTION - B

Answer **any 7** questions from among the questions **5** to **13**. These questions carry **2** marks **each** : (7×2=14)

- 5. Find a unit normal vector n of the cone of revolution $z^2 = 4(x^2 + y^2)$ at the point P: (1, 0, 2).
- 6. Find curl v with respect to right-handed Cartesian coordinates where $v = [y^n, z^n, x^n]$, (n > 0, integer).
- 7. Calculate $\int_C F(r)dr$, where $F = [x^2, y^2, 0]$, and C is the semicircle from (2, 0) to (-2, 0), $y \ge 0$.
- 8. Evaluate $\int_{(5,0)}^{(0,5)} (y^2 e^{2x} dx + y e^{2y} dy)$.
- 9. Write Newton's forward difference interpolation formula.
- 10. Certain corresponding values of x and \log_{10} x are (300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find \log_{10} 301 ?

K24U 0930

- 11. Explain errors in numerical differentiation.
- 12. Explain the Trapezoidal rule.
- 13. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{x} dx$ using Simpson's rule.

SECTION - C

Answer **any 4** questions from among the questions **14** to **19**. These questions carry **3** marks **each** : (4×3=12)

- 14. Find a normal vector of the surface $x^2 + 3y^2 + z^2 = 28$ at the given point P: (4, 1, 3).
- 15. Find the directional derivative of $f = x^2 + y^2 + z^2$ at P = (2, -2, 1) in the direction of a = [-1, -1, 0].
- 16. Find the length of circular helix $r(t) = [2\cos t, 2\sin t, 6t]$ from (2, 0, 0) to $(2, 0, 24\pi)$.
- 17. Use the Newton Raphson method, find a real root of the equation $x\sin x + \cos x = 0$.
- 18. From the Taylor series for y(x), find y(0.1) correct to four decimal places if y(x) satisfies $y' = x y^2$ and y(0) = 1.
- 19. Determine the value of y when x = 0.1, given that y(0) = 1 and $y' = x^2 + y$.

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each : (2×5=10)

- 20. Verify Stokes' theorem for $F = [0, 0, 5x\cos z]$ and $S : x^2 + y^2 = 4$, $y \ge 0$, $0 \le z \le \frac{1}{2}\pi$.
- 21. Verify Green's theorem for $F = [y^2 7y, 2xy + 2x]$ and C is the circle $x^2 + y^2 = 1$.
- 22. Using Runge-Kutta method of both second order and fourth order formula, find y(0.1) and y(0.2) correct to four decimal places, given $\frac{dy}{dx} = y x$ where y(0) = 2, h = 0.1.
- 23. Using Bisection method, find a real root of the equation $x^3 2x 5 = 0$.