

K24U 0741

Reg. No. :

Name :

IV Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2022 Admissions) CORE COURSE IN PHYSICS 4B04PHY : Electronics – I

Time : 3 Hours

Max. Marks: 40

Short answer questions. Answer all questions. Each question carries 1 mark. (6×1=6)

PART – A

- 1. Is Zener voltage same as knee voltage for a Zener diode working in reverse bias ? If not, explain why ?
- 2. List out some applications of a BJT.
- 3. Comment on the relevance of Q-point.
- 4. For the circuit of Figure 1, determine I_D and V_{DS} . Given $I_{DSS} = 40$ mA,

$$V_{GS(off)} = -4 V, V_{DD} = 26 V, V_{GG} = -2 V, R_{G} = 220 k \Omega, R_{D} = 1.2 k \Omega.$$

Figure 1

- 5. Recall how to obtain the original binary number from the 2's compliment.
- 6. Draw the logic symbol of any one universal gate.

K24U 0741

-2-

PART – B

Short essay questions. Answer **any 6** questions. **Each** question carries **2** marks.

(6×2=12)

- 7. Discuss the parameter ripple factor. How does its value vary between full wave and half wave rectifiers ?
- 8. List the important features of a BJT.
- 9. Illustrate the CC configuration for BJT using circuit diagram.
- 10. Which are the different types of JFET ?
- 11. Explain the self-bias condition in a JFET.
- 12. Justify how BCD coding is different than normal binary representation.
- 13. Does binary addition give similar answer as normal decimal addition ? Show with example of adding decimal 2 and 3.
- 14. Write down the following laws in Boolean algebra :
 - a) Idempotent Law
 - b) Identity Law
 - c) Commutative Law
 - d) Associative Law.

PART – C

Problems, answer **any 4** questions. **Each** question carries **3** marks.

- (4×3=12)
- 15. Determine the diode and resistor voltages for the circuit (Figure 2). Assume $V_D = 0.7 \text{ V}$.

16. In a BJT, $I_B = 68 \ \mu$ A, $I_E = 30 \ m$ A and $\beta = 440$. Determine the α rating of the transistor. Then determine the value of I_C using both the α rating and β rating of the transistor.

17. For Figure 3, determine I_D and V_{DS}. I_{DSS} =16 mA, V_{DD} = 25 V, V_{GS(off)} = -3V, $V_{SS} = -9V R_G = 680 k\Omega$, $R_S = 2k\Omega$, $R_D = 2.7k\Omega$.

-3-

- 18. Convert the numbers (137.24)₈, (5230.17)₈ into decimal format.
- 19. Draw circuits using logic gate symbols for the following Boolean expressions :
 - a) $Q = \overline{A} + BC(D\overline{A})$
 - b) $Q = \overline{A(\overline{BC})} + B\overline{A} + C$
 - c) $Q = \overline{A + B + C} + BC\overline{A}$
- 20. Using Boolean algebra simplify the expression : BC + B(C+A) + C (C+B).

PART – D

Long essay questions. Answer any 2 questions. Each question carries 5 marks.

(2×5=10)

- 21. Elaborate on the working of Zener diode as a voltage regulator. Demonstrate with suitable diagrams and mathematical expressions. List out other applications of Zener diode.
- 22. Explain the DC load line and bias point in a BJT. Show how BJT can be employed in switching circuits using diagrams.
- 23. Compare the basic bias circuits of a JFET in detail with circuit diagrams.
- 24. Justify the importance of binary arithmetic for digital electronics. What is the underlying concept for using binary arithmetic ? Discuss the significance of signed numbers and 2's compliment in subtraction.