

Reg. N	10.	: .	 	 	 	••••
Name	:		 	 	 	

IV Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2022 Admissions) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04 MAT-CS: Mathematics for Computer Science – IV

Time: 3 Hours Max. Marks: 40

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark. (4×1=4)

- 1. Define a graph isomorphism.
- 2. Draw a 3-regular graph on 6 vertices.
- 3. What is meant by optimal solution to an LPP?
- 4. What is the necessary and sufficient condition for the existence of a feasible solution to a transportation problem?
- 5. State the trapezoidal rule for finding an approximate area under a given curve.

PART - B

Answer any 7 questions from this Part. Each question carries 2 marks. (7×2=14)

- 6. Define a complete graph. Find a formula for the number of edges of a complete graph on n vertices.
- 7. Show that in any graph G, the number of odd degree vertices must be even.
- 8. Define adjacency matrix of a graph. Write any three properties of adjacency matrix of a simple graph.
- 9. Prove that a simple graph G and its complement \overline{G} cannot both be disconnected.

10. Reduce the following LPP to its standard form.

Maximize $z = x_1 - 3x_2$

Subject to the constraints $-x_1 + 2x_2 \le 15$, $x_1 + 3x_2 = 10$ x_1 and x_2 unrestricted in sign.

- 11. State the fundamental theorem of linear programming.
- 12. Explain the North-West corner method to solve a transportation problem for an initial solution.
- 13. Explain transportation problem and show that it can be considered as an LPP.
- 14. Estimate the error of the trapezoidal formula.
- 15. Approximate the integral $\int_{0}^{2} x^{3} dx$ using Simpson's $\frac{1}{3}$ rule with two sub intervals.

PART - C

Answer any 4 questions from this Part. Each question carries 3 marks. (4×3=12)

- 16. A simple graph G is called self-complementary if it is isomorphic to its complement. Then
 - a) Draw a self-complementary graph.
 - b) Prove that if G is a self-complementary graph on n vertices then n is either 4k or 4k + 1 for some integer k.
- 17. a) Define distance d(x, y) between two vertices x and y in a connected simple graph G.
 - b) Show that $d(x, y) \le d(x, z) + d(z, y)$ for any three vertices x, y and z in a connected simple graph.
 - c) Find the radius and diameter of the Peterson graph.
- 18. Describe the general linear programming problem in :
 - a) Standard form
 - b) Canonical form.

K24U 0735 -3-

19. Let
$$x_1 = 2$$
, $x_2 = 4$ and $x_3 = 1$ is a feasible solution to the system of equations
$$2x_1 - x_2 + 2x_3 = 2$$
$$x_1 + 4x_2 = 18$$

Reduce the given feasible solution to a basic feasible solution.

20. Determine an initial basic feasible solution to the following transportation problem using Vogel's approximation method:

	D	E	F	G	Available
Α	115	1300	17	14	250
В	16	18	14	10	300
С	21	24	13	10	400
Requirement	200	225	275	250	

- 21. Given $\frac{dy}{dx} = x y^2$ and y(0) = 1, obtain Taylor's series for y(x). Find y(0.1)correct to 4 decimal places.
- 22. Solve by modified Euler's method, the problem $\frac{dy}{dx} = x + y$, y(0) = 0. Choose h = 0.2 and compute y(0.2) and y(0.4).

Answer any 2 questions from this Part. Each question carries 5 marks. $(2 \times 5 = 10)$

23. Use graphical method to solve the LPP:

Maximize
$$z = 2x_1 + x_2$$

Subject to the constraints $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 - x_2 \le 2$, $x_1 - 2x_2 \ge 10$, $x_1 \ge 0$ and $x_2 \ge 0$.

24. Using simplex method to solve the LPP:

$$Maximize z = 5x_1 + 4x_2$$

Subject to the constraints
$$4x_1 + 5x_2 \le 10$$
, $3x_1 + 2x_2 \le 9$, $8x_1 + 3x_2 \le 12$, $x_1 \ge 0$ and $x_2 \ge 0$.

25. Solve the following transportation problem:

	D ₁	D_{2}	D_3	D_4	Available
01	5	3	6	2	19
02	4	7	9	1	37
03	3	4	7	5	34
Requirement	16	18	00 31 100	25	_

26. Using fourth order Runge-Kutta formula, find y(0.2) and y(0.4) given that

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, y(0) = 1.$$

