Reg. No. : \qquad
Name : \qquad
IV Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, April 2024
(2019 to 2022 Admissions)
GENERAL AWARENESS COURSE IN COMPUTER SCIENCE
4A13CSC : Digital Electronics
Time: 3 Hours
Max. Marks : 40

> PART-A
(Short Answer)
Answer all questions.

1. What is the BCD representation of the decimal number 12 ?
2. Give truth table of a NAND gate.
3. Which logic gates are known as Universal Gates ?
4. Explain the purpose of Flip-flops in digital circuits?
5. Give the 1 's complement of $(10110111)_{2}$.
6. Simplify the Boolean function $Y=A+A B$.

> PART-B
(Short Essay)
Answer any six questions.
7. Convert $(427)_{10}$ to Hexadecimal.
8. State De-Morgan's Theorem.
9. Draw the Combinational Circuit of a Half Adder.
10. Give any two differences between Latches and Flip-flops.

K24U 0715

11. Explain Gray Code.
12. Apply De-Morgan's Theorem and reduce the Boolean Function $Y=\overline{A B C} \overline{\bar{C}}$.
13. Differentiate Multiplexers and Demultiplexers.
14. Differentiate Combinational Circuits and Sequential Circuits.

PART - C
(Essay)
Answer any four questions.
15. Write note on ASCII and UNICODE.
16. What are SOP and POS expression formats ?
17. What are Parity Generators? What is its role in Digital Data Transmission?
18. Explain the working of JK Flip-flop with suitable diagram.
19. Draw the sequential circuit for a 4 bit asynchronous counter.
20. Design a 4 to 2 Encoder.

> PART - D
(Long Essay)
Answer any two questions.
21. Explain with an example how binary subtraction can be performed using 1's and 2's complement addition.
22. Minimize the following Boolean function using K-Map $0 F(A, B, C, D)=\Sigma m(0,1,3,5,7,8,9,11,13,15)$.
23. Realise the universal property of any one of the Universal Gate.
24. Explain various Shift Registers in detail.

