K23U 4229

	 1811 1851

Reg. No	
Name:	

I Semester B.Sc. Degree (C.B.C.S.S. – Supplementary/One Time Mercy Chance) Examination, November 2023
(2014 to 2018 Admissions)
CORE COURSE IN PHYSICS
1B01 PHY: Physics Primers

Time: 3 Hours

Max. Marks: 40

Instruction : Write answers only in English.

SECTION - A

Answer all. Very short answer type. Each question carries one mark.

- 1. Rest mass of photon is
- 2. The maximum mass theoretically possible for a stable white dwarf star is called
- 3. The velocity of a particle in m/s is $3\hat{i} + 4\hat{j} + \sqrt{11}\hat{k}$. The speed of the particle is _____ m/s.
- 4. The velocity of transverse waves in stretched strings depends on the and mass per unit length of the string. (4×1=4)

SECTION - B

Answer any seven. Short answer type. Each question carries two marks.

- 5. Give the postulates of special theory of relativity.
- 6. Give the scientific contributions of the Indian Scientist C.V. Raman.
- 7. State the fundamental theorem for curls.
- 8. Show the cylindrical coordinates (s, ϕ , z) of a point in a diagram.
- 9. Define divergence of a vector. What is its geometrical meaning?
- 10. Define gradient of a scalar function. Find the gradient of $T = x^3yz^2$.
- 11. What is meant by energy density of a plane progressive wave ? Give its expression.

K23U 4229

- 12. State the principle of superposition for a number of waves travelling
- 13. What was the difference between Newton and Laplace about the speed of
- 14. What are Lissajous figures ?

 $(7 \times 2 = 14)$

SECTION - C

Answer any four. Short essay/problem type. Each question carries three marks.

- 15. Explain Planck's hypothesis of quantum.
- 16. Prove that for any vector v, the divergence of curl is zero. i.e. $\nabla \cdot (\nabla \times \mathbf{v}) = 0$.
- 17. If $r = \sqrt{x^2 + y^2 + z^2}$, prove that $\nabla r = \hat{r}$.
- 18. Calculate the Laplacian of the following functions $T = x^2 + 2xy + 3z + 4$.
- 19. The potential energy of a harmonic oscillator in its resting position is 5 joule and the total energy is 9 joule. When the amplitude is 2 m, what is the force constant?
- 20. Calculate the velocity of longitudinal waves in a rod. (Young's modulus of material is 2.91×10^{11} N/m² and density of the rod is 7.98×10^3 kg/m³). (4×3=12)

SECTION - D

Answer any two. Long essay type. Each question carries five marks.

- 21. Give a note on the following:
 - a) Expanding universe and
 - b) Unification of fundamental forces.
- 22. What are spherical polar coordinates? Discuss the unit vectors, elementary lengths, elementary area and elementary volume.
- 23. Discuss the propagation of longitudinal waves in gases and derive an
- 24. What is meant by harmonic oscillator? Solve the differential equation of a harmonic oscillator and find the expression for its velocity, displacement and $(2 \times 5 = 10)$