Reg. No. :
Name : \qquad
I Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2023 (2019 Admission Onwards)
Complementary Elective Course in Mathematics 1C01 MAT-CS : MATHEMATICS FOR COMPUTER SCIENCE - I

Time : 3 Hours
Max. Marks : 40

PARI - A

Answer any 4 questions from this Part. Each question carries 1 mark.

1. Find the derivative of $\sec x$.
2. Find $D^{n}(\sin a x+b)$.
3. Give an example of a system of linear homogeneous equations in three variables. Also discuss its solutions.
4. Define an orthogonal transformation and illustrate with an example.
5. State Langrange's mean value theorem.
PART - B

Answer any 7 questions from this Part. Each question carries 2 marks.
6. Find the derivative of $(\cos x)^{\log x}$.
7. State Leibnitz's theorem for the $\mathrm{n}^{\text {th }}$ derivative of product of two functions.
8. State and prove Cauchy's mean value theorem.
9. Verify Rolle's theorem for the function $f(x)=\frac{\sin x}{e^{x}}$ in the interval $[0, \pi]$.
10. Evaluate $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{2} \tan x}$
11. Using Taylor's series, evaluate $\log _{e} 1.1$ correct to 4 decimal places.
12. Determine the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5\end{array}\right]$.
13. Are the vectors $(1,3,4,2),(3,-5,2,2),(2,-1,3,2)$ linearly dependent? If so find the relation between them.
14. Test the consistency of the system of equation $4 x-2 y+6 z=8, x+y-3 z=-1$, $15 x-3 y+9 z=21$.
15. Define an orthogonal matrix. Show that a matrix A is orthogonal, then the determinant of A is either 1 or -1 .
PART - C

Answer any 4 questions from this Part. Each question carries 3 marks.
16. If $a x^{2}+2 h x y+b y^{2}=1$, then find $\frac{d^{2} y}{d x^{2}}$.
17. i) Show that $D^{n}\left(a^{m x}\right)=m^{n}(\log a)^{n} \cdot a^{m x}$
ii) Show that $D^{n}(a x+b)^{m}=m(m-1)(m-2) \ldots(m-n+1) \dot{a}^{n}(a x+b)^{m-n}$.
18. Using Maclaurin's series, expand $e^{\sin x}$ up to the term containing x^{4}.
19. Using Taylor's theorem expand $\tan ^{-1} x$ in powers of $(x-1)$ upto four terms.
20. Use Gauss-Jordan method, find the inverse of the matrix $\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$.
21. Using partition method, find the inverse of the matrix
$\left[\begin{array}{rrr}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right]$.
22. Write the working procedure to fit the parabola $y=a+b x+e x^{2}$ from a given data.
PART - D

Answer any 2 questions from this Part. Each question carries 5 marks.

23. Find the $n^{\text {th }}$ derivative of the following:

a) $e^{2 x} \cos ^{2} x \sin x$
b) $e^{-3 x} \cos ^{3} x$.
24. i) Evaluate $\lim _{x \rightarrow 0} \frac{e^{x} \sin x-x-x^{2}}{x^{2}+x \log (1-x)}$.
ii) Evaluate $\lim _{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^{2}}}$.
25. i) Show that the equations $3 x+4 y+5 z=a, 4 x+5 y+6 z=b, 5 x+6 y+7 z=c$ do not have a solution unless $a+c=2 b$.
ii) Write the procedure to test the consistency of a system of equations in n unknowns.
26. Fit a second degree parabola to the following data

$x=1.0$	1.5	2.0	2.5	3.0	3.5	4
$y=1.1$	1.3	1.6	2.0	2.7	3.4	4.1

