

Reg. No. :

III Semester B.Sc. Degree (CBCSS – Supplementary)
Examination, November 2023
(2017 – 2018 Admissions)
COMPLEMENTARY COURSE IN MATHEMATICS
3C03MAT – CS: Mathematics for Computer Science – III

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Verify that $y = ce^{-x} + x^2 2x$ is a solution of the differential equation $y' + y = x^2 2$.
- 2. Show that $\cos \pi x$ and $\sin \pi x$ are linearly independent.
- 3. State the Linearity property of the Laplace transform.
- 4. Write the one dimensional Heat equation.

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Solve the initial value problem $y^3 \frac{dy}{dx} + x^3 = 0$, y(0) = 1.
- 6. Solve the initial value problem $\frac{dy}{dx} + y \tan x = \sin 2x$, y(0) = 1.
- 7. Find an ordinary differential equation for which 1, e^{-3x} are solutions.
- 8. Find a general solution of the differential equation 4y'' 20y' + 25y = 0.
- 9. Solve $(D^2 + 6D + 13I)y = 0$.
- 10. Find the Laplace transform of ta.
- 11. Find the Inverse Laplace transform of $s^2(s^2+w^2)$

- 12. Show that $\int_{-\pi}^{\pi} \cos mx \cos nx dx = 0$, where m and n are integers, m \neq n.
- 13. Show that the functions $u = 4x^2 + t^2$ and $u = \sin 8x \cos 2t$ are solutions of the wave equation $u_{tt} = c^2 u_{xx}$ for appropriate value of c.

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Show that the differential equation $2\sin 2x \sinh y dx \cos 2x \cosh y dy = 0$, y(0) = 1 is exact and solve it.
- 15. Solve the differential equation $2xyy' = y^2 x^2$.
- 16. Reduce to first order and solve the differential equation $y'' + y'^3 \sin y = 0$.
- 17. Find the inverse Laplace transform of $\frac{1}{s^4 + \pi^2 s^2}$
- 18. Find the Fourier series of the function $f(x) = x^2$, $0 < x < 2\pi$.
- 19. Transform into normal form and solve the PDE x $u_{xy} y u_{yy} = 0$.

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Find the orthogonal trajectory of the curve $y = ce^{-3x}$.
- 21. Solve the initial value problem $y'' + 2y' + 10y = 17\sin x 37\sin 3x$, y(0) = 6.6, y'(0) = -2.2.
- 22. Using Convolution theorem solve the initial value problem $y'' + 5y' + 4y = 2e^{-2t}$, y(0) = 0, y'(0) = 0.
- 23. Solve the one dimensional Heat equation $u_t = c^2 u_{xx}$ having boundary equations u(0,t) = u(L,t) = 0 for all t and the initial condition u(x,0) = f(x).