

Reg.	No.	8		
Nam	e :		**********************	

III Semester B.Sc. Degree (CBCSS – OBE – Regular/Supplementary/
Improvement) Examination, November 2023
(2019 to 2022 Admissions)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS
3C03 MAT-CS: Mathematics for Computer Science – III

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any 4 questions. Each question carries 1 mark.

- 1. Show that y = c/x is a solution of the differential equation xy' = -y, $x \ne 0$.
- 2. Write the general solution of the differential equation y'' = y.
- 3. State existence and uniqueness theorem for initial value problem.
- 4. Find the Laplace transform f(t) = coshat.
- 5. Write one dimensional heat equation.

 $(4 \times 1 = 4)$

PART - B

Answer any 7 questions. Each question carries 2 marks.

- 6. Solve the initial value problem y' = -2xy, y(0) = 1.8.
- 7. Find the particular solution of xy' + y = 0, y(4) = 6.
- 8. Find the general solution of 4y'' 4y' 3y = 0.
- 9. Find the Wronskian of functions $y_1 = x^3$ and $y_2 = x^2$.
- 10. Find the Laplace transform of $f(t) = e^{at}sinwt$.
- 11. State convolution theorem in Laplace transform.

- 12. Find the inverse transform of $F(s) = \frac{s}{s^2 + a^2}$
- 13. Show that $u(x, y) = A(y)e^{x} + B(y)e^{-x}$ is the solution of the partial differential equation $u_{xx} u = 0$.
- 14. Find the fourier series of the function $f(x) = x^2$, $0 < x < 2\pi$ and $f(x + \pi) = f(x)$.
- 15. Prove that the product of two odd function is even function. (7×2=14)

PART - C

Answer any 4 questions, Each question carries 3 marks.

- 16. Solve the initial value problem (cosysinhx + 1) dx sinycoshxdy = 0, y(1) = 2.
- 17. Solve $y'' + 3y' + 2y = 12x^2$.
- 18. Solve by method of variation of parameters y'' + y = secx.
- 19. Find the inverse transform of $F(s) = \frac{1}{s(s^2 + w^2)}$.
- 20. Solve the Volterra integral equation $y(t) \int_{0}^{t} y(\tau) \sin(t \tau) d\tau = t$.
- 21. Find the fourier series of the function $f(x) = x + \pi$ if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$.
- 22. Find the Fourier cosine series of $f(x) = \sin x$, $0 < x < \pi$. (4×3=12)

Answer any 2 questions. Each question carries 5 marks.

- 23. Find an integrating factor and solve the initial value problem $(e^{x+y} + ye^y)dx + (xe^y 1)dy = 0$, y(0) = -1.
- 24. Solve the Euler cauchy equation $x^2y'' 5xy' + 9y = 0$.
- 25. Solve the initial value problem y'' y' 6y = 0, y(0) = 11, y'(0) = 28 using Laplace transform.
- 26. Find the Fourier coefficients of the function $f(x) = \begin{cases} -k, & \text{if } -\pi < x < 0, \\ k, & \text{if } 0 < x < \pi, \end{cases}$ and $f(x + 2\pi) = f(x).$ (2x5=10)