Reg. No. : \qquad
Name : \qquad

Third Semester B.A. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
(2019 Admission Onwards)
COMPLEMENTARY ELECTIVE COURSE IN ECONOMICS/DEVELOPMENT ECONOMICS
3C03ECO/DEVECO : Mathematical Economics - I
Time: 3 Hours
Max. Marks : 40
PART - A

Short answer type questions. Answer all questions. Each carries one mark.

1. If total revenue, $T R=100+100 Q^{2}$, then what is the marginal revenue?
2. The differential co-efficient of $2 X^{3}+3 X^{2}+4 X+10$ is
3. Define mathematical economics.
4. What is optimisation?
5. Describe utility.
6. Define monopoly.
PART - B

Short essay type questions. Answer any six questions. Each carries two marks.
7. What is a dumping ?
8. If the saving function is given by $S=-150+0.4 \mathrm{Y}$, find the values of MPC and MPS.
9. Given the demand function, $P=Q^{2}+2 Q+1$, write down the $T R$ and $M R$ function.
10. Given production function, $Q=36 K L-2 K^{2}-3 L^{2}$, find $M P_{L}$ and $M P_{K}$.
11. Show that Cobb-Douglas production function is linear homogeneous.
12. If price of a commodity is Rs. 3/- and price elasticity of demand is -3 , find the MR.
13. Establish the relationship between MPS and MPC in a two-sector model.
14. A profit maximising monopoly firm with a demand curve $P=50-Q$ and marginal cost is Rs. 10/-. Find out equilibrium quantity.
PART - C

Essay type questions. Answer any four questions. Each carries three marks.
15. Distinguish between cardinal and ordinal utilities.
16. Explain consumer's surplus.
17. Given utility function, $U=x y+3 x+4 y$, find the marginal utilities of good x and y.
18. Compare marginal product and average product.
19. What is constrained optimization?
20. Explain the various ingredients of a mathematical model with an example. ($4 \times 3=12$)
PART - D

Long essay type questions. Answer any two questions. Each carries five marks.
21. Derive the equilibrium of a firm under perfect competition.
22. From the demand function $Q=400-6 P$, find the price elasticity of demand at prices Rs. 4/-, Rs. 10/- and Rs. 15/-.
23. Suppose the demand function is represented as, $Q_{d}=70000-2000 P$ and supply function as $Q_{s}=5000+2000 \mathrm{P}$. Find the equilibrium price and quantity.
24. Explain the Lagrange multiplier method of optimisation.
($2 \times 5=10$)

