Reg. No. : \qquad
Name: \qquad
Third Semester B.Sc. Degree (CBCSS - Supplementary)
Examination, November 2022
(2016-18 Admissions)
COMPLEMENTARY COURSE IN PHYSICS
3C03 PHY: Optics and Photonics
Max. Marks : 32
Time : 3 Hours
Instruction : Write answers in English only.

SECTION - A

Very short answer type. Each carries 1 mark. Answer all 5 questions.

1. Two waves of same wavelength λ will interfere constructively at a point when their path difference is
2. SI unit for Einstein coefficient B is
3. In a diffraction pattern due to a straight edge, the ratio of intensity at the first maximum to the intensity at the geometric shadow is
4. In a double refraction, the phase separation between O-ray and the E-ray needed to get a plane polarized light is
5. A fibre optic cable with a cladding of refractive index n_{2} and a core of refractive index n_{1} has a critical angle $\phi_{c}=$
SECTION - B

Short answer type. Each carries 2 marks. Answer any 4 questions.
6. State superposition principle. Does intensities of waves obey superposition principle?
7. Explain what is double refraction of light.
8. Explain Malu's law.
9. How can we arrange a plane transmission grating to obtain a Fraunhoffer diffraction?
10. How population inversion is achieved in He-Ne laser?
11. Explain critical angle for a fibre optic cable.

SECTION - C

Short essay/problem type. Each carries 3 marks. Answer any 3 questions.
12. Light of wavelength 576 nm is incident on an air wedge to form interference pattern. If the fringe width is 0.288 mm and the length of the wedge 4 cm , find the maximum thickness of wedge.
13. A beam of monochromatic light incident on a uniform thin film of refractive index 1.5 at an angle of incident 30° from above. The smallest value of thickness for which the top surface of the film appears bright is $t=3 \times 10^{-7}$ meters. Find the wavelength λ of the light.
14. An optical fiber has a cladding of refractive index 1.45 and a critical angle of 70°. Find the refractive index of the core and the angle of acceptance.
15. A certain atom displays stimulated emission of light of wavelength 570 nm between levels E_{2} and E_{1}. At equilibrium, find the temperature at which the number of atoms in E_{2} be exactly half of that in E_{1}. Given : $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$, $h=6.63 \times 10^{-34} \mathrm{Js}$.
16. For a plane wavefront, show that all Fresnel zones have equal area.

SECTION - D

Long essay type. Each carries 5 marks. Answer any 2 questions.
17. Describe double refraction and explain how elliptically, circularly and linearly polarized light can be produced.
18. Obtain the necessary conditions for a diffraction pattern on a plane transmission grating. Describe how to determine wavelength of an unknown line in a diffraction spectrum, if wavelength of green line $\lambda_{\text {green }}$ is given.

- 19. Obtain the condition for interference maxima and minima in a Newton's rings arrangement. Explain how we can determine the wavelength of a monochromatic light using this arrangement.

20. Explain Raman effect and provide the quantum mechanical explanation for it.
