Reg. No. : $\qquad$
Name : $\qquad$
Third Semester B.Sc. Degree (CBCSS - Supplementary) Examination, November 2022
(2016-18 Admissions) CORE COURSE IN PHYSICS
3B03PHY : Allied Physics

## Time : 3 Hours

Instructions: 1) Section-A : Answer all questions (very short answer type, each question carries 1 mark).
2) Section - B : Answer any seven questions (short answer type, each question carries 2 marks).
3) Section - C: Answer any four questions (short essay/ problem type, each question carries 3 marks).
4) Section - D: Answer any two questions (long essay type, each question carries 5 marks).
5) Write answers in English only.
SECTION - A

1. Define the term symmetry operations.
2. The packing fraction of a BCC structure is
3. As per Stokes law the viscous force acting on a spherical drop of radius a moving with velocity $v$ is
4. Inductive reactance of an ac circuit is
SECTION - B
5. Explain the terms Lattice and Basis.
6. Sketch (100) and (101) planes in simple cubic cell.
7. Write a short note on:
1) Unit cell and
2) Primitive cell.
8. Describe simple cubic; face centred cubic and the hexagonal close packed structure.
P.T.O.
9. Explain equation of continuity in the case of a liquid flow.
10. Explain neutral surface and neutral axis of a beam.
11. State and explain superposition theorem.
12. Distinguish between streamline and turbulent motion of liquid.
13. Define $Q$ factor of an LCR circuit.
14. Explain Kirchoff's laws.
SECTION - C
15. Explain the powder method of crystal structure analysis.
16. Calculate the glancing angle on the plane ( 100 ) of a rock salt crystal ( $a=2.84 \AA$ ) 。 corresponding to second order diffraction maximum for $X$-ray wavelength $0.8 \AA$.
17. State and prove maximum power transfer theorem.
18. An air bubble of radius 1 mm is allowed to rise through a long cylindrical column of a viscous liquid and travels at a steady rate of $2.1 \mathrm{~cm} \mathrm{~s}^{-1}$. If the density of the liquid is $1470 \mathrm{~K} \mathrm{gm}^{-3}$, find its viscosity. Assume $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$, neglect the density of air.
19. If the excess pressure inside a spherical bubble is balanced by that due to a column of oil (relative density 0.8 ) 2 mm high when $\mathrm{r}=1 \mathrm{~cm}$, find the surface tension of the soap bubble.
20. Explain the growth of current in a CR circuit.
( $4 \times 3=12$ )
SECTION - D
21. a) What are Miller indices? How are they determined?
b) The orthorhombic crystal has lattice parameters in the ratio $0.424: 1: 0.366$. Find the Miller indices of a crystal plane whose intercepts are in the ratio $0.212: 1: 0.183$.
22. Show that Young's modulus $Y$, modulus of rigidity $\eta$ and Poisson's ratio $\sigma$ are related by the equation $Y=2 \eta(1+\sigma)$.
23. State and prove Bernoulli's theorem and mention any 2 applications.
24. Derive an expression for impedance of an LCR series circuit. Explain Resonance. Obtain an expression for resonant frequency.
