

Reg. No. :

Name :

IV Semester B.Sc. Degree (CBCSS – Supplementary) Examination, April 2022 (2016 – 18 Admissions) COMPLEMENTARY COURSE IN MATHEMATICS 4C04MAT-CS: Mathematics for Computer Science – IV

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Define divergence of a vector.
- 2. State Stoke's theorem.
- 3. Find the divergence of $x\hat{i} + y\hat{j} + z\hat{k}$.
- 4. Write Lagrange's Interpolation formula.

SECTION - B

Answer **any 7** questions from among the questions **5** to **13**. These questions carry **2** marks **each**.

- 5. Find the directional derivative of $f=2x^2+3y^2+z^2$ at the point (2, 1, 3) in the direction of $\hat{i}-2\hat{k}$.
- 6. Using Stoke's theorem evaluate $\iint_s (\text{curl } \vec{F}).\hat{n}dA$ where $\vec{F} = z^2\hat{i} + 5x\hat{j}$ and S is the square $0 \le x \le 1$, $0 \le y \le 1$, z = 1.
- 7. Evaluate $\iint_S \vec{F} \cdot \hat{n} dA$ where $\vec{F} = x\hat{j}$ and S is the portion of the sphere $x^2 + y^2 + z^2 = 1$ in the first octant.
- 8. Using Divergence theorem, evaluate $\iint_S \vec{F} \cdot \hat{n} dA$ where $\vec{F} = x^2 \hat{i} + z^2 \hat{k}$ and S is the surface of the cube $|x| \le 1, |y| \le 3, |z| \le 2$.

- 9. Use Newton-Raphson method to find a root of the equation $x^3 2x 5 = 0$.
- 10. Find the Lagrange Interpolating polynomial of degree 2 approximating the function $y = \ln x$ defined by the following table of values.

		3 440 1011	owing table (
$y = \ln x$	2	2.5	3.0
Certain com	0.69315	0.91629	1.09861

- 11. Certain corresponding values of x and $log_{10}x$ are (330, 2.4771), (304, 2.4829), (305, 2.4871) and (307, 2.4871). Find log_{10} 301.
- 12. Using Picard's method, obtain the solution of $\frac{dy}{dx} = x + y^2$, y(0) = 1.
- 13. Given $\frac{dy}{dx} 1 = xy$ and y(0) = 1, obtain Taylor series for y(x).

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Find the curvature of $y = x^2$.
- 15. Find the length of the circular helix $r(t) = \cos t \hat{i} + \sin t \hat{j} + t \hat{k}$ from t = 0 to $t = 2\pi$.
- 16. Using Green's theorem, evaluate $\oint_c \vec{F} \cdot dr$ where $\vec{F} = x^2 e^{y} \hat{i} + y^2 e^{x} \hat{j}$, C is the rectangle with vertices (0, 0), (2, 0), (2, 3), (0, 3).
- 17. The table below gives the values of tan x for $0.10 \le x \le 0.30$.

			x = 0.30			
[x y = tan x Find tan 0.40.	0.10 0.1003	0.15 0.1511	0.20 0.2027	0.25 0.2553	0.30
Ť	"14 tan 0.40.					

- 18. Find the cubic polynomial which takes the following values: y(1) = 24, y(3) = 120,
- 19. From the Taylor series for y(x), find y(0.1) correct to four decimal places if y(x)

SECTION - D

Answer **any 2** questions from among the questions **20** to **23**. These questions carry **5** marks **each**.

- 20. For any twice continuously differentiable vector functions \vec{u} and \vec{v} , show that $\operatorname{curl}(\vec{u} + \vec{v}) = \operatorname{curl}\vec{u} + \operatorname{curl}\vec{v}$.
- 21. Evaluate ∬_s (7xî zk̂).ndA for the sphere S: x² + y² + z² = 4 using Divergence theorem and verify it directly.
- 22. From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2

x 1.0 1.2 1.4 1.6 1.8 2.0 2.2 y 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250			o oi x anu	y, obtain	$\frac{dy}{dx}$ and $\frac{dy}{dx}$	y for
y 2.7183 3.3201 4.0552 4.9530 6.0496 7.000		2 11	T	1	dx dy	$\frac{101}{x^2}$ 101 X = -
0.3201 4.0552 4.9530 6.0496 7.3801 6.22	y 2.7183 33	201 1.4	1.6	1.8	20	
0.0430 / 3001 0	0.0	201 4.0552	4.9530	6.0406	7.00	2.2
Given dy 7.3891 9.0250	Given dy			0.0496	7.3891	9.0250

23. Given $\frac{dy}{dx} = y - x$ where y(0) = 2, find y(0.1) correct to four decimal places, by Runge-Kutta fourth-order formula.