Reg. No. : \qquad
Name : \qquad

IV Semester B.Sc. Degree (CBCSS - Supplementary) Examination, April 2022 (2016-18 Admissions) COMPLEMENTARY COURSE IN MATHEMATICS 4C04MAT-PH : Mathematics for Physics and Electronics - IV
 Time : 3 Hours

Max. Marks : 40

SECTION - A

All the first $\mathbf{4}$ questions are compulsory. They carry 1 mark each.

1. Define curl of a vector field.
2. Find the divergence of $x^{2} \hat{i}+y^{2} \hat{\mathbf{j}}$.
3. Give the parametric representation of the cylinder $x^{2}+y^{2}=a^{2},-1 \leq z \leq 1$.
4. Write Newton's backward difference interpolation formula.
SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.
5. Find a unit normal vector of the cone of revolution $z^{2}=4\left(x^{2}+y^{2}\right)$ at $(1,0,2)$.
6. The function $y=\sin x$ is tabulated below. Using Lagrange's interpolation formula, find the value of $\sin \frac{\pi}{6}$.

\mathbf{x}	0	$\pi / 4$	$\pi / 2$
$\mathbf{y = \boldsymbol { \operatorname { s i n } } \mathbf { x }}$	0	0.70711	1.0

7. Using Picard's method, obtain the solution of $\frac{d y}{d x}-1=x y, y(0)=1$.
8. Using Euler's method, solve the differential equation $y^{\prime}=-y$, with the condition $y(0)=1$. Choose $h=0.01$ and compute $y(0.04)$.
9. Evaluate $\iint_{s} \vec{F}$. $\hat{\mathrm{n}} \mathrm{dA}$ where $\overrightarrow{\mathrm{F}}=\mathrm{x}^{2} \hat{\mathbf{i}}+3 y^{2} \hat{\mathrm{k}}$ and S is the portion of the plane $x+y+z=1$ in the first octant.
10. Using Stoke's theorem evaluate $\iint_{S}(\operatorname{curl} \vec{F})$.nd A where $\vec{F}=y \hat{i}-x \hat{j}$ and S is the circular semidisk $x^{2}+y^{2} \leq 4, x \geq 0, z=0$.
11. Using Divergence theorem, evaluate $\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$ where S is the closed surface consisting of the cylinder $x^{2}+y^{2}=a^{2}(0 \leq z \leq b)$ and the circular disks $z=0$ and $z=b\left(x^{2}+y^{2} \leq a^{2}\right)$.
12. Given that the equation $x^{2.2}=69$ has a root between 5 and 8 , use the method of regular-falsi to determine it.
13. Find the missing term in the following table.

\mathbf{x}	0	1	2	3	4
\mathbf{y}	1	3	9	-	81

SECTION - C

Answer any 4 questions from among the questions 14 to 19 . These questions carry 3 marks each.
14. Show that the curvature of a circle of radius a is $\frac{1}{a}$.
15. Is the velocity vector $\vec{v}=y_{i}-x_{j}$ irrotational?
16. Using Green's theorem, evaluate $\oint_{C} F(r) . d r$ where $F=x^{2} e^{y} \hat{i}+y^{2} e^{x} \hat{j}, C$ is the rectangle with vertices $(0,0),(2,0),(2,3)$ and $(0,3)$.
17. Given the differential equation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}$ with the initial condition $y=0$ when $x=0$, use Picard's method to obtain y for $x=0.25$ correct to 3 decimal places.
18. Find a real root of the equation $\mathrm{x}=\mathrm{e}^{-\mathrm{x}}$, using the Newton-Raphson method.
19. The table below gives the values of $\tan x$ for $0.10 \leq x \leq 0.30$

\mathbf{x}	0.10	0.15	0.20	0.25	0.30
$\mathbf{y}=\tan \mathbf{x}$	0.1003	0.1511	0.2027	0.2553	0.3093

Find $\tan 0.26$.

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.
20. For any twice continuously differentiable vector function \vec{v}, show that $\operatorname{div}($ curliv $)=0$.
21. From the following table of values of x and y, obtain $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ for $x=1.2$.

\mathbf{x}	1.0	1.2	1.4	1.6	1.8	2.0	2.2
\mathbf{y}	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

22. Verify Stoke's theorem for $F=\left[z^{2}, 5 x, 0\right]$ over the square S: $0 \leq x \leq 1,0 \leq y \leq 1$, $z=1$.
23. Given $\frac{d y}{d x}=1+y^{2}$ where $y=0$ when $x=0$, find $y(0.2)$ correct to four decimal places, by Runge-Kutta fourth-order formula.
