Reg. No. : \qquad
Name : \qquad

IV Semester B.Sc. Degree CBCSS (OBE) Regular/Supplementary/ Improvement Examination, April 2022 (2019 Admission Onwards)

 COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

 COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04MAT-PH : Mathematics for Physics - IV

Time : 3 Hours
PART - A

Answer any four questions from this Part. Each question carries 1 mark.

1. Find the order of the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)$.
2. Find the gradient of $f(x, y, z)=\sqrt{\ln \left(x^{2}+y^{2}+z^{2}\right)}$.
3. Write a parametrization of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
4. Find the divergence of the vector field $F(x, y)=\frac{-y}{x^{2}+y^{2}} \hat{i}+\frac{x}{x^{2}+y^{2}} \hat{j}$.
5. Define Trapezoidal rule.
PART - B

Answer any seven questions from this Part. Each question carries $\mathbf{2}$ marks.
6. Show that $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ is a parabolic partial differential equation.
7. Solve the partial differential equation $u_{y y}=0$.
8. Find the line integral of $f(x, y)=x-y+3$ along the curve $r(t)=\cos t \hat{i}+\sin t \hat{j}$,
9. What is the circulation density of $F=\tan ^{-1}\left(\frac{y}{x}\right) \hat{i}+\ln \left(x^{2}+y^{2}\right) \hat{j}$?
10. Show that $\sin y \cos x d x+\cos y \sin x d y+d z$ is exact.
11. Integrate $G(x, y, z)=x^{2}$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$.
12. Find the curl of $F=(x-y) \hat{i}+(y-z) \hat{j}+(z-x) \hat{k}$.
13. Prove that $\nabla \times \nabla f=0$.
14. Use Trapezoidal rule with $\mathrm{n}=4$ to approximate $\int_{0}^{2} \mathrm{x}^{3} \mathrm{dx}$.
15. Find an upper bound for the error in estimating $\int_{0}^{2} 5 x^{4} d x$ using Simpson's $\frac{1}{3}$ - rule with $n=4$.
16. Find the Taylor series for $y(x)$ if $\frac{d y}{d x}=1+x y$ and $y(0)=1$.
PART - C

Answer any four questions from this Part. Each question carries 3 marks.
17. Transform the partial differential equation $u_{x x}+2 u_{x y}+u_{y y}=0$ into a normal form.
18. If u_{1} and u_{2} are solutions of $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in some region R, then prove that $u=c_{1} u_{1}+c_{2} u_{2}$ where c_{1} and c_{2} are constants is also a solution of the above partial differential equation.
19. Find the circulation of the field $F=(x-y) \hat{i}+x \hat{j}$ around the circle $r(t)=\cos t \hat{i}+\sin t \hat{j}$, $0 \leq t \leq 2 \pi$.
20. Show that $F=\left(e^{x} \cos y+y z\right) \hat{i}+\left(x z-e^{x} \sin y\right) \hat{j}+(x y+z) \hat{k}$ is conservative over its natural domain and find a potential function for it.
21. Find the area of the surface cut from the paraboloid $x^{2}+y^{2}-z=0$ by the plane $z=2$.
22. Use Euler method to find the value of Estimate the value of y when $x=0.1$ if $y^{\prime}=x^{2}+y$ and $y(0)=1$.
23. If $\frac{d y}{d x}=y-x$ and $y(0)=2$, find $y(0.1)$ correct to four decimal places.
PART - D

Answer any two questions from this Part. Each question carries 5 marks.
24. Find the solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with boundary condition $u(0, t)=u(L, t)=0, t \geq 0$ and initial condition $u(x, 0)=f(x), \quad u_{t}(x, 0)=0$, $0 \leq x \leq L$ where $f(x)=\begin{array}{lll}\frac{2 k x}{L} & \text { if } & 0 \leq x<L / 2 \\ \frac{2 K(L-x)}{L} & \text { if } & L / 2 \leq x \leq L\end{array}$
25. Find the counter clockwise circulations and outward flux of the field $F=x y \hat{i}+y^{2} \hat{j}$ around and over the boundary of the region enclosed by the curves $y=x^{2}$ and $y=x$ in the first quadrant.
26. Calculate the circulation of the field $F=2 y \hat{i}+3 x \hat{j}-z^{2} \hat{k}$ around the circle $x^{2}+y^{2}=9$ in the XY plane counter clockwise when viewed from above.
27. If $y=A+B x+C x^{2}$ and y_{0}, y_{1}, y_{2} are the values y corresponding to $x=0, h$ and $2 h$ respectively, prove that $\int_{0}^{2 h} y d x=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)$.

