K22U 1442

Reg. No.	:	,
Name:		

IV Semester B.A. Degree CBCSS (OBE) Regular/Supplementary/ Improvement Examination, April 2022 (2019 Admission Onwards)

COMPLEMENTARY ELECTIVE COURSE IN ECONOMICS/DEV. ECONOMICS 4C04ECO/DEV. ECO: Mathematical Economics – II

Time: 3 Hours

Max. Marks: 40

PART - A

Answer all questions. Each carries one mark.

- 1. What is LPP?
- 2. What is closed input output model ?
- 3. What is pay off matrix?
- 4. What is objective function in LPP?
- 5. What is dynamic input output model?
- 6. What is decision variable in LPP?

 $(1 \times 6 = 6)$

PART – B

Answer any six questions. Each carries two marks.

- 7. State any four limitations of Linear programming.
- 8. Explain slack and surplus variable.
- 9. Explain the various characteristics of LPP.
- 10. Distinguish between Maximax and Minimax principle in game theory.
- 11. Explain saddle point in game theory.
- 12. Explain two person zero sum game with an example.
- 13. Explain any four applications of input output model.
- 14. Explain input coefficient matrix.

 $(6 \times 2 = 12)$

PART - C

Answer any four questions. Each carries three marks.

15. Solve the following linear programming problem via dual.

$$C = 4x_1 + 6x_2$$
Subjected to

Minimise $x_1 + 2x_2 \ge 4$

$$x_1 + x_2 \ge 3$$

$$x_1 \ge 0, x_2 \ge 0$$

16. Determine the solution of the following game.

	T			<u> </u>	
Player A	Player B				
		11	11	111	
	<u> </u>	-2	15	-2	
	11	-5	- 6	-4	
		– 5	20	-8	

- 17. Explain Nash equilibrium with an example.
- 18. Use dominance property to solve the following games.

- 19. Write down the input matrix, the Leontief matrix and the specific input output
 - In a two industry economy, it is known that industry I uses 10 cents of its own product and 60 cents of commodity II to produce a dollar's worth of commodity I. Industry II uses none of its own product but uses 50 cents of commodity I in producing a dollar's worth of commodity II and the open sector demands \$ 1000 billion of commodity and \$ 2,000 billion of commodity II.
- 20. Explain the concept of prisoners dilemma.

 $(4 \times 3 = 12)$

PART - D

Answer any two questions. Each carries five marks.

21. Solve the following linear programming problem by graphic method.

Maximise,
$$Z = x_1 + x_2$$

Subject to $x_1 + x_2 \le 1$
 $-3x_1 + x_2 \ge 3$
 $x_1 \ge 0$
 $x_2 \ge 0$

22. Solve the following LPP by the Simplex method:

Maximise
$$Z = 100x_1 + 60x_2 + 40x_3$$

Subject to the constraints
 $x_1 + x_2 + x_3 \le 100$

$$x_1 + x_2 + x_3 \le 100$$

 $10x_1 + 4x_2 + 5x_3 \le 500$
 $x_1 + x_2 + 3x_3 \le 150$
 $x_1, x_2, x_3 \ge 0$

23. Given the technology matrix A and final demand vector F, find the gross output of the three sectors.

24. Solve the following games graphically and find the value of the game.

Player B

Player A
$$A_1$$
 70 25 45 40 A_2 10 60 30 50

 $(5 \times 2 = 10)$