K21U 6559

Reg.	No.	:	 	 	•	 •	••	 • •	•	•	 •	• •	 •	-	 •	•	•	•

Name:

I Semester B.Sc. Degree (CBCSS – Supplementary) Examination, November 2021 (2015 – 2018 Admissions) COMPLEMENTARY COURSE IN MATHEMATICS

1C01MAT – PH : Mathematics for Physics and Electronics – I

Time: 3 Hours Max. Marks: 40

SECTION - A

Answer all the questions. Each question carries 1 mark.

- 1. Cosh(x + y) =_____
- 2. State the Rolle's theorem.
- 3. What is the condition for partial derivatives f_{xy} and f_{yx} are equal ?
- 4. Write the equations relating polar and Cartesian coordinates.

SECTION - B

Answer any seven questions. Each question carries 2 marks.

- 5. $\frac{d}{dx}(\tanh^{-1}x)$.
- 6. Find $\frac{dy}{dx}$, when $x = a(\cos t + t \sin t)$ and $y = a (\sin t t \cos t)$.
- 7. State the Leibnitz's theorem.
- 8. Let f(x) = (x a)(x b)(x c), a < b < c, show that f'(x) = 0 has two roots one belonging to a, b and other belonging to a, b.
- 9. Show that $\lim_{x\to 0} \frac{e^x e^{-x} 2\log(1+x)}{x \sin x} = 1$.
- 10. Evaluate $\lim_{x \to \infty} \frac{\log x}{\sqrt{x}}$.

K21U 6559

11. Find the first order partial derivatives of $\log (x^2 + y^2)$.

12. If
$$u = e^{sin(x+y)}$$
, find $\frac{\partial^2 u}{\partial x^2}$.

 Define Chord of curvature and write the equation of chord of curvature parallel to y-axis.

Answer any four questions. Each question carries 3 marks.

- 14. Find the nth derivatives of e^x sin²x.
- 15. Prove that $f\left(\frac{x^2}{1+x}\right) = f(x) \frac{x}{1+x} f'(x) + \frac{x^2}{(1+x)^2} \frac{f''(x)}{2!} + \dots$ using Taylor's
- 16. Find the Maclaurin's series expansion of sin x.
- 17. If $u = 3(/x + my + nz)^2 (x^2 + y^2 + z^2)$ and $f^2 + m^2 + n^2 = 1$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$
- 18. For a curve $s^2 = 8ay$, show that the radius of curvature $\rho = 4a\sqrt{1 \frac{y}{2a}}$.
- 19. Graph the sets of points $1 \le r \le 2$ and $0 \le \theta \le \frac{\pi}{2}$ in the polar plane.

Answer any two questions. Each question carries 5 marks.

- 20. If y = a cos (log x) + b sin (log x), show that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$.
- 21. Determine $\lim \left(\frac{\pi}{2} x\right)^{\tan x}$ as $x \to \left(\frac{\pi}{2} 0\right)$.
 - 22. In the curve $r^m = a^m \cos m\theta$, prove that $a^{2m} \frac{d^2r}{ds^2} + mr^{2m-1} = 0$.
 - 23. Translate the equation $\rho = 5 \cos \phi$ into Cartesian and cylindrical equations.