K21U 6509

Reg. No. :

I Semester B.A. Degree (CBCSS – Supplementary) Examination, November 2021 (2015 – 2018 Admissions) COMPLEMENTARY COURSE IN ECONOMICS/DEVELOPMENT ECONOMICS

1C01ECO: Mathematics for Economic Analysis - I

Time: 3 Hours

Max. Marks: 40

PART - A

Answer all questions (Each question carries 1 mark).

- 1. If $C = x^3 2x$, find the marginal cost.
- 2. Find the derivative of $\frac{7}{x^7}$.
- 3. When a market demand curve is given by D=50-5p, find the amount demanded when the commodity is a free good.
- 4. Find $\underset{x\to 2}{Lt} (x^2 + 1) (x^3 + 1)$.

 $(4 \times 1 = 4)$

PART - B

Answer any 7 questions (Each question carries 2 marks).

- 5. State the conditions for maxima of a function.
- 6. Define exponential function with a suitable example.

7. Find
$$\frac{d^2y}{dx^2}$$
 if $y = (x + 2)^2$.

- 8. Define continuity of a function at a point.
- 9. Differentiate between increasing and decreasing functions.

K21U 6509

THE REPORT OF THE PERSON OF THE PERSON

- 10. State the Euler's theorem.
- 11. Differentiate 3x.
- 12. What is constrained optimization?
- 13. Find $\frac{dz}{dx}$ for the function $z = (x + y)^2$.
- 14. Define Marginal Revenue.

$$(7 \times 2 = 14)$$

Answer any 4 questions (Each question carries 3 marks).

15. If
$$y = x^{10} + 3x^8 + 4x^2 - 7x + 8$$
, find $\frac{d^4y}{dx^4}$.

- 16. Draw the graph for the function $y^2 = 4x$.
- 17. What are the properties of continuous functions?
- 18. Find the differential coefficient of $x^3 + y^3 = 3axy$.
- 19. Using L 'Hospitals Rule', evaluate $\lim_{x\to 2} (x^2 3x + 2) / (x^2 5x + 6)$.

PART - C

20. Find the first order partial derivatives for $z = 2w^2 + 8wxy - x^2 + y^3$. PART - D

$$z = 2w^2 + 8wxy - x^2 + y^3$$
. (4x3=12)

Answer any 2 questions (Each question carries 5 marks).

- 21. Explain the application of Derivatives in Economic Analysis.
- 22. Verify Euler's theorem for the function $u = ax^2 + 2hxy + by^2$.
- 23. Define Elasticity. Find the elasticity of demand if the quantity demanded is 4 units and if the demand law is $p = \frac{10}{(q+1)^2}$
- 24. Optimize the utility function $U = 48 (x 5)^2 3(y 4)^2$ subject to the constraint $(2 \times 5 =$ x + 3y - 9 = 0 and find the maximum utility.