K21U 2073
Reg. No. : \qquad
Name : \qquad
III Semester B.Sc. Degree (CBCSS - Sup./Imp.) Examination, November 2021 (2015 - '18 Admissions)
GENERAL COURSE IN COMPUTER SCIENCE

3A12CSC : Digital Electronics

Time : 3 Hours
Max. Marks : 40

SECTION - A

1. One word answer.
a) 2 's complement of the binary number 10110100_{2} is \qquad
b) The base of hexadecimal number system is \qquad
c) For a two input $X O R$ gate we get a high output if \qquad
d) A \qquad has single input and many outputs.
e) In a seven segment display, LEDs b and c lit up. Then the decimal number displayed is \qquad
f) Condition for JK flip flop to toggle is \qquad
g) If a counter is connected using 6 flip flop then the maximum number of states that the counter count is \qquad
h) In sequential circuits the output states depend upon \qquad .

SECTION - B

Write short notes on any seven of the following questions.
2. Find the binary and BCD equivalent of the decimal number 2469.
3. State de-Morgan's first law.
4. State associative law for Boolean additicn.
5. Define cell adjacency in k-map.
6. Why are multiplexers called data selectors ?
7. What is the function of a decoder?
8. Define flip flop.
9. What is a master slave flip flop ?
10. Define a sequential circuit.
11. Give an account of shift register counter.

SECTION - C

Answer any four of the following questions.
12. Convert $Y=A+B C^{\prime}+A B+A^{\prime} B C$ into canonical form.
13. Explain the advantages and disadvantages of k-map method.
14. List the difference between combinational and sequential circuits.
15. Give the comparison between synchronous and asynchronous counters.
16. Minimize the function $f=x\left(y+w^{\prime} z\right)+w x z$ using Boolean algebra.
17. Define the two types of shift register counters.

> SECTION - D

Write an essay on any two of the following questions.
18. With suitable examples explain the methods for implementing signed arithmetic.
19. Simplify the expression $F(A, B, C, D)=\Sigma(5,7,8,9,13,15)$ using Karnaugh map. Draw the logic diagram of the expression both before and after simplifying.
20. With relevant figure and waveform explain SR, D and JK flip flops.
21. Design a four bit magnitude comparator which checks for equality, less than and greater than conditions.

