Reg. No. :

Name :

III Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp. Examination, November 2021 (2019-2020 Admission) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 3C03 MAT-CS: Mathematics for Computer Science – III

Time: 3 Hours

Max. Marks: 40

PART - A

Answer any four questions. Each question carries one mark.

- 1. Solve y' = -2xy, y(0) = 3.
- 2. Show that sinxcosydx + cosxsinydy = 0 is an exact differential equation.
- 3. Find the general solution of y'' 5y' + 6y = 0.
- 4. Find the Wronskian of sin 2x and cos 2x.
- 5. Give an example of an odd function in the interval [-2, 2].

PART - B

Answer any seven questions. Each question carries two marks.

- 6. Solve $\frac{dy}{dx} = e^{x+2y} + xe^{2y}$, given that y(0) = 0.
- 7. Solve $y' + y \tan x = \sin 2x$.
- 8. Solve $x(x + y^2)dx + y(y + x^2)dy = 0$.
- 9. Solve y'' 2y' + 2y = 0.
- 10. Solve $y'' y' 6y = e^{3x}$.
- 11. Find the inverse Laplace transform of $\frac{s+3}{s^2-4s+13}$.

K21U 1837

-2-

12. Find the Laplace transform of
$$f(t) = \begin{cases} 0 & 0 < t < 1 \\ t - 1 & 1 < t < 2 \\ 1 & t > 2 \end{cases}$$
13. Find the Fourier series expansion of $f(t)$

- 13. Find the Fourier series expansion of f(x) = x in the interval $-\pi \le x \le \pi$.
- 14. Find the Fourier sine series expansion of $f(x) = x^2$ in $(0, \pi)$.
- 15. Show that $u=e^{-t}$ sint satisfy the heat equation $\frac{\partial u}{\partial t}=c^2\frac{\partial^2 u}{\partial x^2}$ for suitable c. PART - C

Answer any four questions. Each question carries three marks.

- 16. Solve y logy $dx + (x \log y) dy = 0$.
- 17. Solve $2xyy' = x^2 y^2$.
- 18. Solve y'' + y = secx.
- 19. Solve the Volterra integral equation.

$$y(t) - \int_{0}^{t} (1+\tau)y(t-\tau)d\tau = 1 - \sinh t$$

- 20. Solve $\frac{d^2y}{dt^2} 2\frac{dy}{dt} + y = e^t$ using Laplace transforms, given that y(0) = 2and y'(0) = -1.
- 21. Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$.
- 22. Find the Fourier series expansion of $f(x) = \frac{\pi x}{2}$ in $0 \le x \le 2\pi$.

K21U 1837

PART - D

Answer any two questions. Each question carries five marks.

23. Solve the following differential equations

a)
$$(1+y^2)dx = (tan^{-1}y - x) dy$$

b)
$$(y^2e^{xy^2} + 4x^3) dx + (2xye^{xy^2} - 3y^2) = 0.$$

24. Solve the following differential equations

a)
$$x^2y'' + xy + y = 0$$
, $y(1) = 0$ and $y'(1) = \frac{5}{2}$.

b)
$$y'' - 6y' + 9y = e^{3x} + \cos 3x$$
.

25. a) Solve the system of ODE $y'_1 = 4y_1 + y_2$, $y'_2 = -y_1 + 2y_2$ given that $y_1(0) = 3$ and $y_2(0) = 1$.

b) Find the inverse Laplace transform of
$$\frac{\omega}{s^2(s^2+\omega^2)}$$
.

26. a) Find the Fourier series expansion of f(x) = 2 - x for -2 < x < 2.

b) Find the Fourier cosine series of
$$f(x) = \begin{cases} x & \text{if } 0 \le x < 0.5 \\ 1-x & \text{if } 0.5 < x < 1 \end{cases}$$