

Reg. No.:	leg. No	. :	•	,		• ,					•	-	•	F		•	-						•	*	•	•			•			•	-	•	•	•	-	7	•	•	•	
-----------	---------	-----	---	---	--	-----	--	--	--	--	---	---	---	---	--	---	---	--	--	--	--	--	---	---	---	---	--	--	---	--	--	---	---	---	---	---	---	---	---	---	---	--

Name :

IV Semester B.Sc. Degree CBCSS (OBE) Regular Examination, April 2021 (2019 Admission Only)

Complementary Elective Course in Mathematics 4C04MAT-PH: MATHEMATICS FOR PHYSICS - IV

Max. Marks: 40 Time: 3 Hours

PART - A

Answer any four questions from this part. Each question carries 1 mark.

- 1. Find the order of the partial differential equation $\frac{\partial \mathbf{u}}{\partial t} = c^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2}$.
- 2. Find the gradient of $f(x, y, z) = e^z \ln(x^2 + y^2)$.
- 3. Define flux density of a vector field F.
- 4. What is the flux of a three dimensional vector field F across an oriented surface S in the direction of n ?
- 5. Describe the fourth order Runge-Kutta formula.

 $(4 \times 1 = 4)$

PART - B

Answer any seven questions from this part. Each question carries 2 marks.

- 6. Show that $\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}$ is a hyperbolic partial differential equation.
- 7. Solve the partial differential equation $u_{xx} 16\pi^2 u = 0$.
- 8. Find the line integral of f(x, y, z) = x + y + z over the straight line segment of from (1, 2, 3) to (0, -1, 1).
- 9. Find the work done by the conservative field $F = yz\hat{i} + xz\hat{j} + xy\hat{k} = \nabla f$ where f(x, y, z) = xyz along any smooth curve C joining the point A(-1, 3, 9) to B(1, 6, -4).
- 10. Show that $F = (e^x \cos y + yz)\hat{i} + (xz e^x \sin y)\hat{j} + (xy + z)\hat{k}$ is conservative over its natural domain.

K21U 1126

-2-

- 11. Integrate G(x, y, z) = x over the parabolic cylinder $y = x^2, 0 \le x \le 2, 0 \le z \le 3$.
- 12. Find the curl of $F = (x^2 z)\hat{i} + xe^z\hat{j} + xy\hat{k}$.
- 13. Prove that $\nabla \times \nabla f = 0$.
- 14. Use Trapezoidal rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$.
- 15. Find an upper bound for the error in estimating $\int_0^2 5x^4 dx$ using Simpson's $\frac{1}{3}$ rule with n = 4.
- 16. Using Euler's method solve $y' = 1 + y^2$, y(0) = 0.

 $(7 \times 2 = 14)$

PART - C

Answer any four questions from this part. Each question carries 3 marks.

- 17. Transform the partial differential equation $xu_{xx} yu_{xy} = 0$ into a normal form.
- 18. If u_1 and u_2 are solutions of $\frac{\hat{c}^2 u}{\hat{c} x^2} + \frac{\hat{c}^2 u}{\hat{c} y^2} = 0$ in some region R, then prove that $u = c_1 u_1 + c_2 u_2$ where c_1 and c_2 are constants is also a solution of the above partial differential equation.
- 19. Evaluate the line integral $\int\limits_0^{-}-ydx+zdy+2xdz$ where C is the helix $r(t)=\cos t\,\hat{i}\,+\sin t\,\hat{j}\,\,+t\hat{k},\,0\leq t\leq 2\pi\,\cdot$
- 20. Find the surface area of a sphere of radius a.
- 21. Find the flux $F = xy\hat{i} + yz\hat{j} + xz\hat{k}$ outward through the surface of the cube cut from the first octant of the planes x = 1, y = 1 and z = 1.
- 22. Estimate the value of the integral $\int_{1}^{3} \frac{1}{x} dx$ by Simpson's rule with 4 strips and determine the error.
- 23. If $\frac{dy}{dx} = 1 + y^2$ with y(0) = 0, find y(0.2) correct to four decimal places. (4×3=12)

PART - D

Answer any two questions from this part. Each question carries 5 marks.

- 24. Find the solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \quad \text{with boundary condition}$ $u(0,t) = u(L,t) = 0, \ t \geq 0 \ \text{and initial condition} \quad u(x,0) = f(x), \ u_t(x,0) = 0, \ 0 \leq x \leq L$ where $f(x) = \frac{\frac{2kx}{L} \text{ if } 0 \leq x < \frac{L}{2}}{L} \text{ if } L \leq x \leq L$
- 25. Verify both forms of Green's theorem for the vector field $F(x, y, z) = (x y)\hat{i} + x\hat{j}$ and the region R bounded by the unit circle $C: r(t) = \cos t \hat{i} + \sin t \hat{j}$, $0 \le t \le 2\pi$.
- 26. Verify divergence theorem for the expanding vector field $\mathbf{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ over the sphere $x^2 + y^2 + z^2 = a^2$.
- 27. Show that the differential equation $\frac{d^2y}{dx^2} = -xy$, y(0) = 1, y'(0) = 1 has the series $(2 \times 5 = 1)$

solution
$$y = 1 - \frac{x^3}{3!} + \frac{1 \times 4}{6!} x^6 - \frac{1 \times 4 \times 7}{9!} x^9 + \cdots$$