

Reg. No.:

Name:

II Semester B.A. Degree (CCSS - Supple./Improv.) Examination, May 2015 (2012/13 Admn.)

COMPLEMENTARY COURSE IN ECONOMICS 2 C02 ECO: Mathematics For Economic Analysis - II

Time: 3 Hours

Max. Weightage: 30

10. Define eigen value.

Instruction: Answer may be written either in English or in Malayalam.

PART-A

- Choose the correct answer.
 - 1. If the rows and columns of a determinant are interchanged, then the determinant A diagonal matrix in which each of the diagonal elements is unity i.sulay

 - a) Remains the same (the value is changed b) Sign of the value is changed
- c) Becomes zero
- d) None of these

a) ab

b) 0

 $c) -a^2$

- d) b
- 3. Integration is
 - a) Reciprocal of differentiation
 - b) Reverse process of differentiation 12. Can you differentiate consumer's surplus with
 - c) Deriving the derivatives
 - d) Putting together

$$\frac{3}{4} \cdot \int_{2}^{3} 2x dx =$$

- Il Semester B.A. Deg 01 (docess Supple / Improv.) 6 (a c) 5+c

 - 2105 vs.M. d) 2

- II. 5. Optimisation means
 - a) Maximisation
 - c) None of them
- b) Minimisation d) Any of them
- 6. Profit is maximum when

 - c) Both
 - a) $\frac{dp}{dx} = 0$ b) $\frac{d^2p}{dx^2}$ is negative
 - d) None of these

- 7. Solution of 3x = 6 is
 - a) 2

- b) 3
- c) 9 eo entinent beons dore to esta d) 1
- 8. A diagonal matrix in which each of the diagonal elements is unity is called
 - a) Scalar matrix was entropied (b) Unit matrix emperent entention of (s

- c) Null matrix
- geodylo and d) Raw matrix.

PART-B

- 9. Define orthogonal matrix.
- 10. Define eigen value.

11. If
$$A = \begin{bmatrix} 2 & -1 \\ 7 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 5 \\ -2 & 6 \end{bmatrix}$ then find (3A + 7B).

- 12. Can you differentiate consumer's surplus with producer's surplus.
- 13. Exemplify triangular matrix.
- 14. If MR = 21 2x find TR when 10 units are sold.

15. Does the system

$$7x_1 - 3x_2 - 3x_3 = 7$$

$$2x_1 + 4x_2 + x_3 = 0$$

 $-2x_2 - x_3 = 2$ Possess an unique solution?

16.
$$\int (x+1)^5 dx$$
.

17. If $A = \begin{bmatrix} 5 & 3 \\ 0 & 5 \end{bmatrix} B = \begin{bmatrix} -8 & 0 & 7 \\ 1 & 3 & 2 \end{bmatrix}$, test the commutative law of multiplication of matrices.

18. Without calculation show that
$$\begin{vmatrix} 5 & 7 & 2 \\ 2 & 3 & 1 \\ 10 & 14 & 4 \end{vmatrix} = 0$$
. To its rego which the desired in the second of the second of

- 19. Prove that matrix addition is commutative as well as associative.
- 20. Define rank of a matrix.

(10×1=10)

21. P.T (A+B) (C+D) = AC + AD + BC + BD where A,B,C and D are matrices.

22. Find:

i)
$$C = AB$$
 and

ii) D = BA if A
$$\begin{bmatrix} -2\\4\\7 \end{bmatrix}$$
, B $\begin{bmatrix} 3\\6\\2 \end{bmatrix}$. K3
$$11 = x^2 + y^2 + x^2$$

$$21 = x^2 - y^2 + x^2$$

23. Prove that
$$(AB)^T = B^T A^T$$
.

15. Does the system

24. Find the rank of the matrix
$$C = \begin{bmatrix} 7 & 6 & 3 & 3 \\ 0 & 1 & 2 & 1 \\ 8 & 0 & 0 & 8 \end{bmatrix}$$

from its echelon matrix and comment on the question of non singularity.

- 25. What is Hawkins Simon condition?
- 26. What are the necessary and sufficient conditions for a relative extremum of y = f(x)?
- 27. Integrate x² e^{3x}.

 $(5 \times 2 = 10)$

- 28. Explain about matrix operation.
- 29. Integrate:

a)
$$e^x - \frac{1}{x}$$

$$(x^2 + e^{5x})$$

c)
$$\frac{\log x}{x}$$

d)
$$\frac{x + 12}{x^2 - 13x + 42}$$

- 30. Explain about basic properties of determinants.
- 31. Solve the following system of equation applying Crammer's rule.

$$2x - 3y + 5z = 11$$

$$5x + 2y - 7z = -12$$

$$-4x + 3y + z = 5$$
. (2x4=8)