Reg. No. : \qquad
Name : \qquad

I Semester B.A. Degree (CCSS - Regular) Examination, November 2014

 (2014 Admn.) COMPLEMENTARY COURSE IN ECONOMICS 1 C 01 ECO : Mathematics for Economic Analysis - ITime: 3 Hours
PART-A
(Answer all questions. Each carries 1 mark.)

1. A function of the form $y=3^{x}$ is called \qquad
2. $\operatorname{Lt}_{x \rightarrow 3} \frac{x^{2}-9}{x-3}$ is \qquad
3. If $R=15 x-2 x^{2}, M R$ is \qquad
4. If $y=3 x^{3}-2 x^{2}+6 x, \frac{d^{4} y}{d x^{4}}$ is \qquad
PART-B
(Answer any 7 questions. Each carries 2 marks.)
5. Define continuity of a function at a point.
6. Differentiate convex and concave functions.
7. The demand for a monopolist is $p=15-2 x$ and cost function is $C(x)=x^{2}+2 x$.

Find MR and AC.
8. Find $d^{2} z$ if $z=2 x^{3}+3 y^{2}$.
9. Criterion for maximum value of a function.
10. Find the differential coefficient of $x^{2}+y^{2}-9$.
11. If $y=e^{2 x}$ find $\frac{d^{2} y}{d x^{2}}$.
12. The cost function is $\pi=a+b q+c q^{2}$, define $M C$ and $A C$.
13. L'Hospital's rule.
14. When a function $z=f(x, y)$ is minimum ?
PART-C
(Answer any 4 questions. Each carries 3 marks.)
15. The demand law for sugar is $P=15-\frac{1}{5} x$. Find MR function. Represent it graphically when is MR zero?
16. Find the limit of the function as n tends to $\infty, \frac{n^{2}+2}{n^{2}+3}$.
17. If $y=\frac{1}{x^{2}}$, ST $x^{4} y_{2}+x^{3} y_{1}-4=0$.
18. If $M R$ is 25 and elasticity of demand with respect to price is 2 , find $A R$.
19. Differentiate $\frac{1}{\sqrt{3+2 x}}$.
20. Show that the function $x^{2}+4 x-2$ is continuous for $x=3$.
PART-D
(Answer any 2 questions. Each carries 5 marks.)
21. Explain the application of partial and total derivatives in Economics.
22. A radio manufacturer produces x sets per week at a total cost of Rs. $x^{2}+78 x+2500$. The demand function is $8 x=600-P$ where P is the price per unit. When is the net revenue maximum? What is the price per set then?
23. For the production function $16 y^{2}-y+2(K-4)^{2}+4(L-5)^{2}-80=0$, find the marginal productivities.
24. Verify Euler's theorem for the function $u=8 x^{3}+2 x^{2} y+3 x y^{2}+y^{3}$.

