

Reg.	No.		 	 •••	•••	 	••
Nama	•						

III Semester B.Sc. Degree (CCSS – 2014 Admn. – Regular) Examination, November 2015 COMPLEMENTARY COURSE IN PHYSICS 3C03 PHY: Optics and Photonics

Time: 3 Hours

Max. Marks: 32

SECTION-A

Answer all questions. Very short answer type. Each question carries 1 mark.

SECTION-B

Answer any 4 questions. Short answer type. Each question carries 2 marks.

- 6. Distinguish between Fraunhofer and Fresnel classes of diffraction.
- 7. Discuss about fiber optic sensors.
- 8. What do you mean by interference ? What are the conditions for sustained interference of light waves ?
- 9. Explain polarization by reflection.
- Define and explain the term 'dispersive power of a grating'. Derive an expression for it.
- 11. Explain light propagation in fibers.

 $(4 \times 2 = 8)$

SECTION-C

Answer any 3 questions. Short essay/problem type. Each question carries 3 marks.

- 12. A soap film of thickness 5×10^{-5} cm is viewed at an angle of 35° to the normal. Find the wavelength of light in visible region which are absent in the reflected light. Refractive index of soap film is 1.33.
- 13. Establish the relation between Einstein's coefficients.
- 14. The core and cladding of a silica optical fiber have refractive indices of $n_1 = 1.5$ and $n_2 = 1.4$, respectively.
 - a) Calculate the critical angle of reflection for the core-cladding boundary.
 - b) Calculate the acceptance angle of the fiber.
- 15. Calculate the thickness of a half-wave plate for light of wavelength 589.3 nm. Principal refractive indices are n_o = 1.544 and n_e = 1.553.
- 16. Explain about He-Ne laser.

 $(3 \times 3 = 9)$

SECTION - D

Answer any two questions. Long essay type. Each question carries 5 marks.

- 17. Describe Fresnel's diffraction at a straight edge. Derive an expression for the distance of nth bright band from the edge of geometrical shadow. Sketch the intensity distribution of Fresnel's diffraction by a straight edge.
- 18. Explain production and detection of plane, circularly and elliptically polarized light.
- 19. Explain the formation of Newton's rings. Describe the method of determination of wavelength of monochromatic light by Newton's ring apparatus.
- 20. Explain Raman effect. Describe quantum theory of Raman effect. (2×5=10)