K17U 1709
Reg. No. : \qquad
Name : \qquad
V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November 2017
(2014 Admn. Onwards)
CORE COURSE IN PHYSICS 5B09 PHY : Python Programming
Time: 3 Hours
Max. Marks : 40

SECTION - A

Answer all. Very short answer type. Each question carries 1 mark.

1. Write the output of python code

$$
2 * * 3+4 / 2
$$

2. linalg() is used to find \qquad of a matrix.
3. For data visualization the package using in python programming is
4. Write the function in math module to find factorial of a number.

SECTION - B
Answer any seven. Short answer type. Each question carries 2 marks.
5. Write the use of colon character in python.
6. What is indentation in python ?
7. Write a program to find out area and perimeter of a circle, if radius is given.
8. What are packages? Give one example.
9. Import numpy as np
$a=n p$. arange(9.0).reshape([3,3])
print a
What will be the output of this program?
10. How can we save and restore a python file?
11. Write a program to plot polar rose.
12. Write Taylor series expansion of $\sin (x)$ and $\cos (x)$.
13. Give mathematical definition of derivative of a function $f(x)$.
14. What are the two modes of using python interpreter?

SECTION-C

Answer any four. Short essay/problem type. Each question carries 3 marks.
15. How can we define and call a function? Give one example.
16. Write a note on math module. Give any two methods to import pi value from math module.
17. Explain different ways to create arrays.
, 18. What are

1) Spirals of Archimedes
2) Fermats.
3) Polar rose.
19. Find the root of $x^{3}-18$ using bisection method.
20. Explain Runge Kutta method to solve differential equations.

Answer any two. Essay type. Each question carries 5 marks.
21. What are conditional executions used in python? Illustrate with example.
22. Illustrate Fourier series. Write programs to generate square wave and sawtooth wave using this technique.
23. Create a 3×3 matrix using random function. Save it as text file. After restoring it find inverse of the matrix.
24. Explain interpolation using Newton's polynomial.

Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
 Examination, November 2017
 (2014 Admn. Onwards)
 CORE COURSE IN PHYSICS
 5B08 PHY: Classical Mechanics and Relativity

Time : 3 Hours
Max. Marks : 40
Instruction : Answer the questions in English only.
SECTION - A

Very short answer type. Each carries 1 mark. Answer all 4 questions.

1. The expression for relativistic energy of a photon is \qquad .
2. A rigid body moving freely in space has degrees of freedom is \qquad .
3. The total linear momentum in the centre of mass frame is \qquad .
4. The dimensional formula for the universal gas constant is \qquad . $(4 \times 1=4)$
SECTION - B

Short answer type. Each carries 2 marks. Answer 7 questions out of 10.
5. Give two examples for conservation of angular momentum.
6. Explain how time dilation was verified experimentally?
7. Explain the significance of the negative result of Michelson-Morley experiment.
8. A light and heavy body have equal kinetic energy of translation which one has greater momentum ?
9. State and explain superposition principle.
10. Explain why moon has no atmosphere ?
11. Show that when $v \ll c$ relative kinetic energy becomes classical one.
12. Why is the velocity of satellite the maximum when it is closest to the sun and the minimum when it is farthest from it in its orbit around the sun?
13. What is the significance of virtual work?
14. Distinguish between elastic and inelastic collisions with examples.
SECTION - C

Short essay/problem type. Each carries 3 marks. Answer 4 out of 6 .
15. Show that the conservation of angular momentum applied to planetary motion leads to the law of conservation of areal velocity.
16. Setup Lagrange's equation of a simple pendulum and hence obtain the time period.
17. Derive the equation $E=m c^{2}$.
18. Calculate the escape velocity from the surface of moon ($\mathrm{G}=6.67 \times 10^{-11} \mathrm{SI}$ units, radius of moon $=1.74 \times 10^{6} \mathrm{~m}, \mathrm{~m}=7.36 \times 10^{22} \mathrm{~kg}$).
19. What is the momentum of a photon of energy $10^{-19} \mathrm{~J}$?
20. Find the speed of the particle at which the mass of the particle is double of its rest mass, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$?
$(4 \times 3=12)$

SECTION - D

Long essay type. Each carries 5 marks. Answer 2 out of 4.
21. Explain the basic postulates of Einstein's special theory of relativity and hence obtain the Lorentz space-time transformation equations.
22. What precisely is meant by the term collision ? Derive an expression for the final velocities of colliding particles inelastic one dimensional collision and discuss different cases.
23. From Kepler's law of planetary motion deduce Newton's law of gravitation.
24. What is D'Alembert's principle ? Derive Lagrange's equation from it for conservative system.

