|||||||||||||||||||||||||||||||||||||||

Reg. No. :
Name: \qquad

III Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Regular/Supplementary/

 Improvement) Examination, November 2023(2019 to 2022 Admissions)

COMPLEMENTARY ELECTIVE COURSE IN PHYSICS FOR B.SC. PROGRAMMES

3C03PHY: Optics and Photonics
Time : 3 Hours
Max. Marks : 32
PART - A

Short answer questions. Answer all questions. Each carries one mark.

1. What is meant by diffraction?
2. Define the dispersive power of grating.
3. Briefly explain population inversion.
4. What do you mean by induced absorption ?
5. What is total internal reflection?

PART - B
Short essay questions. Answer any four questions. Each carries two marks.
6. What are the conditions for sustained interference of light?
7. Explain the phenomenon of colours of thin films.
8. Distinguish between Fresnel diffraction and Fraunhofer diffraction.
9. What is meant by double refraction?
10. Discuss the advantages of fibre optic communication systems.
11. What is an angle of acceptance ?

PART - C

Problems. Answer any three questions. Each carries three marks.
12. A soap film of refractive index 1.33 is illuminated by a white light incident at an angle of 30°. The light reflected by it is examined by a spectroscope in which a dark band corresponding to the wavelength $5 \times 10^{-7} \mathrm{~m}$ is found. Calculate the smallest thickness of the film.
13. A diffraction pattern of a single slit of width $12 \mu \mathrm{~m}$ is formed by a lens of focal length 30 cm . Calculate the distance between the two dark bands on each side of the central bright band. Given $\lambda=670 \mathrm{~nm}$.
14. Calculate the thickness of a quarter-wave plate for a light of wavelength $6 \times 10^{-7} \mathrm{~m}$. Principal refractive indices are $n_{0}=1.544$ and $n_{e}=1.553$.
15. Find the numerical aperture and angle of acceptance of an optical fibre having a core of refractive index 1.6 and a cladding of refractive index 1.50 .
16. Find the ratio of the population of the two states in a $\mathrm{He}-\mathrm{Ne}$ laser that produces light of wavelength $6328 \AA$ at $27^{\circ} \mathrm{C}$.

PART - D
Long essay. Answer any two questions. Each carries five marks.
17. Explain the formation of Newton's rings. Derive an expression for the radii of rings.
18. Discuss in detail Fraunhofer diffraction due to a single slit.
19. Describe the principle, construction and working of a Ruby laser.
20. Explain with the theory the production of circularly polarised and elliptically polarised light waves.

