

Reg. N	lo. :	 	
Name	:	 	

VI Semester B.Sc. Degree (C.B.C.S.S. – Supplementary)
Examination, April 2023
(2017 to 2018 Admissions)
CORE COURSE IN PHYSICS
6B11 PHY: Electrodynamics – II

Time: 3 Hours Max. Marks: 40

Instructions :1) Section – A : Answer all questions. (very short answer type – Each question carries 1 mark.)

- 2) Section **B**: Answer **any seven** questions. (short answer type **Each** question carries **2** marks.)
- 3) Section **C**: Answer **any four** questions. (short essay/ problem type **Each** question carries **3** marks.)
- 4) Section **D**: Answer **any two** questions. (long essay type **Each** question carries **5** marks.)
- 5) Write answers in **English** only.

SECTION - A

1.	In a uniform magnetic field, the net force on a current loop is
2.	The energy per unit time, per unit area, transported by the fields is called
3.	If the direction of vibration of electric field of an electromagnetic wave is confined
	in one plane, the wave is called
4.	If a charged particle q has a velocity u in a plane perpendicular to a uniform
	magnetic field B, the charged particle moves in a circular orbit with radius is
	(4×1=4

SECTION - B

- 5. How do you modify the Maxwell's equations for materials?
- 6. What are the conditions for Coulomb gauge and Lorentz gauge?
- 7. Write down the integral forms of Maxwell's equations.
- 8. Show that electromagnetic wave is a transverse wave in free space.
- 9. What is meant by a plane polarised wave?
- 10. State Poynting theorem.
- 11. Define paramagnetism.
- 12. What is hall effect voltage?
- 13. What is the major difference between a cyclotron and a synchrotron?
- 14. What are the relations between the Magnetisation M and bound currents?

 $(7 \times 2 = 14)$

SECTION - C

- 15. How did the external magnetic field affect atomic orbitals?
- 16. "In electrodynamics Newton's third law does not hold true" justify your answer.
- 17. Show that the following function satisfies one dimensional wave equation $f(z, t) = Ae^{-b(z-vt)^2}.$
- 18. Find the reflection and transmission coefficients on normal incidence for a typical airglass interface with $n_2 = 1.5$ and $n_1 = 1$.

- 19. Show that the mutual inductance between coil 1 and coil 2 is the same as the mutual inductance between coil 2 and coil 1.
- 20. The radius of a D shaped cavity of a cyclotron is 53 cm, and the frequency of the applied voltage source is 12 MHz. Why value of B is needed to accelerate deuterons? What is the kinetic energy of a deuteron as it exit the cavity? (A deuteron has the same charge as proton but almost twice the mass.) (4×3=12)

SECTION - D

- 21. Explain the Maxwell's equations in matter and write down the electromagnetic boundary condition.
- 22. Two different strings are tied together and kept taut. A wave is setup in it .Derive the reflection and transmission coefficient using boundary conditions.
- 23. What are gauge transformations? Explain Lorentz gauge and Coulomb gauge transformations.
- 24. Give a detailed description about the working principle of the betatron. $(2\times5=10)$