Reg. No. : \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards)
 Core Course in Physics 5B06 PHY : QUANTUM MECHANICS

Time : 3 Hours
Max. Marks : 40

PART - A

Short answer questions. Answer all questions. Each carries 1 mark.

1. Braggs law of X ray diffraction is
2. Stefan's law states that the total intensity of a blackbody radiated over all wavelengths is proportional to the \qquad power of its absolute temperature.
3. Davisson Germer experiment proved the \qquad nature of electrons.
4. How is group velocity of a de Broglie wave is related to the particle velocity?
5. Write down the expressions for total energy operator in quantum mechanics.
6. The ground state energy of Hydrogen atom is
PART - B

Short essay questions. Answer any six questions. Each carries 2 marks.
7. What is ultraviolet catastrophe?
8. State Heisenberg's uncertainty principle.
9. Why the de Broglie wave associated with a moving car is not observable ?
10. What is meant by quantum mechanical tunnelling effect?
11. State and explain Zeeman effect.
12. What do you mean by space quantization?
13. Represent the first three wave functions of a particle in a box graphically.
14. Discuss the importance of Stern Gerlach experiment.
$(6 \times 2=12)$
PART - C

Problems. Answer any four questions. Each carries 3 marks.

15. The photoelectrons emitted by a radiation of frequency $3.65 \times 10^{15} \mathrm{~Hz}$ are brought to rest by a retarding potential of 10 volts. Find the threshold frequency.
16. Calculate the de Broglie wavelength of an electron having a velocity of 0.8 c .
17. Find the probability that a particle in a box of L wide can be found between $x=0$ and $x=L / n$ when it is in the $\mathrm{n}^{\text {th }}$ state.
18. Calculate the shortest and longest wavelength limits of Lymen series. $R=1.097 \times 10^{7} \mathrm{~m}^{-1}$.
19. Find the expectation value $\left\langle x^{2}\right\rangle$ of the position of the particle trapped in a box.
20. Electrons with energies of 0.400 eV are incident on a barrier 3.00 eV high and 0.100 nm wide. Find the approximate probability for these electrons to penetrate the barrier.
PART - D

Long essay questions. Answer any two questions. Each carries 5 marks.
21. What is meant by Compton Effect? Derive an expression for Compton shift.
22. Derive time independent Schrodinger equation.
23. Solve the Schrödinger equation for a particle in a box and deduce expressions for energy eigen values and eigen functions.
24. Write down the Schrodinger equation for hydrogen atom in spherical polar coordinates and separate the variables.

