Reg. No. : \qquad
Name : \qquad

IV Semester B.Sc. Degree CBCSS (OBE) Regular/Supplementary/ Improvement Examination, April 2022
 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04MAT-CS : Mathematics for Computer Science - IV

Time : 3 Hours
Max. Marks : 40
PART - A

Answer any four questions. Each question carries 1 mark.

1. Define Graph.
2. Draw complete graph on 5 vertices.
3. What is the error in Simpson's rule ?
4. What is meant by optimal solution of LPP ?
5. Write the objective function of a transportation problem.

PART - B

Answer any seven questions. Each question carries 2 marks.
6. Draw two non-isomorphic graphs.
7. Draw Petersen graph.
8. What are the three components of an LP model ?
9. What are the necessary basic assumptions for all LP problems ?
10. Write down Modified Euler method.
11. Write the following LPP in standard form.

$$
\begin{aligned}
& \operatorname{Min} z=3 x_{1}-2 x_{2}+x_{3} \\
& \text { Subject to } x_{1}+2 x_{2}+3 x_{3} \geq 5 \\
& 2 x_{1}+x_{2} \leq 3 \\
& \\
& x_{1}+2 x_{3} \geq 2 \\
& \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

12. Evaluate $\int_{-1}^{1} x^{3} d x$ using Simpson's one-third rule.

K22U 1566

13. Find an IBFS to the following TP by North-West Corner method.

11	8	3	4
14	3	4	7
5	2	8	1
4	10		
10			

14. Explain degeneracy in a transportation problem.
15. Write down Taylor's series method to solve first order differential equations. ($7 \times 2=14$)
PART - C

Answer any four questions. Each question carries 3 marks.
16. In any graph, prove that there is an even number of odd vertices.
17. Show that k-cube Q_{k} has 2^{k} vertices.
18. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}} u s i n g$ Trapezoidal rule with $h=0.5$.
19. Given $y^{\prime}=-y, y(0)=1$, determine $y(0.01)$ by Euler method.
20. Explain canonical and standard forms of LPP.
21. Explain Least-Cost method.
22. Write down the steps to find an IBFS to a transportation problem by Vogel's approximation method.
$(4 \times 3=12)$
PART - D

Answer any two questions. Each question carries 5 marks.
23. State and prove fundamental theorem of Graph Theory.
24. Solve $\operatorname{Max} z=7 x_{1}+5 x_{2}$

$$
\begin{gathered}
\text { Subject to } x_{1}+2 x_{2} \leq 6 \\
4 x_{1}+3 x_{2} \leq 12 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

25. Solve the following TP.

21	16	25	13	11
17	18	14	23	13
32	27	18	41	19
6	10	12	15	43

26. Using Runge-Kutta method of fourth order, find $\mathrm{y}(0.1)$ correct to 4 decimal
