Reg. No. :

Name :

\qquad

III Semester B.Sc. Degree CBCSS (OBE) Reg/Sup/Jmp. Examination, November 2021
 (2019-2020 Admission)

 COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

 COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS

 3C03 MAT-PH : Mathematics for Physics - III

 3C03 MAT-PH : Mathematics for Physics - III}

Max. Marks : 40
Time : 3 Hours
PART - A

Answer any four questions. Each question carries one mark.

1. Calculate $\iint_{R} \frac{\sin x}{x} d A$ where R is the triangle in the $X Y$-plane bounded by X-axis, the line $y=x$ and the line $x=\frac{\pi}{2}$.
2. Find a vector parallel to the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
3. The Laplace transform of t^{2} is
4. What is fundamental period for a periodic function ?
5. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{x+z}^{1} d y d z d x$.
PART - B

Answer any seven questions. Each question carries two marks.
6. Find the distance from $(1,1,3)$ to the plane $3 x+2 y+6 z=6$.
7. Find an equation for the tangent to the ellipse $\frac{x^{2}}{4}+y^{2}=2$ at the point $(-2,1)$.
8. What are the directions of zero change in $f(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)$ at $(1,1)$?
9. If r is a differentiable vector function of t with constant length prove $r \cdot \frac{d r}{d t}=0$.
P.t.o.

K21U 1833

10. Find the average value of $F(x, y, z)=x y z$ throughout the cubical region D bounded by the coordinate planes and the planes $x=2, y=2, z=2$ in the first octant.
11. Find the Laplace transform of $e^{-t} \sin ^{2} \mathrm{t}$.
12. If $\mathrm{H}(\mathrm{s})=\frac{1}{\left(\mathrm{~s}^{2}+\omega^{2}\right)^{2}}$ find $\mathrm{h}(\mathrm{t})$.
13. Prove that the Fourier series of an odd function $f(x)$ of period $2 L$ is a Fourier
Sine Series.
14. What is the orthogonality relations of the trigonometric system?
15. Find the Principal Unit Normal Vector for the curve $r(t)=\cos 2 t i+\sin 2 t j$.
16. Find $\mathscr{L}(\mathrm{f}(\mathrm{t}))$ where $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{cc}\cos \left(\mathrm{t}-\frac{\pi}{3}\right) & \text { if } \mathrm{t}>\frac{\pi}{3} . \\ 0 & \text { otherwise }\end{array}\right.$
PART - C

Answer any four questions. Each question carries three marks.
17. Sketch the region R enclosed by the parabola $y=x^{2}$ and the line $y=x+2$ and find area of this region.
18. Find the curvature of the circular helix $r(t)=a \cos t i+a \sin t j+b t k: a, b \geq 0$, $a^{2}+b^{2} \neq 0$.
19. Solve $y^{\prime}-y=t, y^{\prime}(0)=1, y(0)=1$ using Laplace mehtod.
20. Using convolution solve $y^{\prime \prime}+3 y^{\prime}+2 y=r(t):$ with
$y^{\prime}(0)=y(0)=0$ and $r(t)=\left\{\begin{array}{ll}1 & \text { if } 1<t<2 \\ 0 & \text { otherwise }\end{array}\right.$.
21. Verify Fubini's theorem for $f(x, y)=100-6 x^{2} y$ for $0 \leq x \leq 2$ and $-1 \leq y \leq 1$.

Find the Fourier series for $f(x)$ in this interval. $\quad\left\{\begin{array}{ll}\pi, & \pi<x<2 \pi\end{array}\right.$.
23. Find the volume of the solid region bounded above by the Paraboloid $z=9-x^{2}-y^{2}$ and below by the unit circle in the $x y$-plane.

PART - D

Answer any two questions. Each question carries 5 marks.
24. Evaluate $\int_{0}^{4} \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2 x-y}{2} d x d y$ by applying the transformation $u=\frac{2 x-y}{2}, v=\frac{y}{2}$.
25. Solve the Laguerre's differential equation ty" $+(1-t) y^{\prime}+n y=0$ to identify the Laguerre polynomials. Also prove these polynomials are defined by Rodrigue's formula.
26. A sinusoidal voltage $E=\sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function with period $\frac{2 \pi}{\omega}$ and is given by $u(t)=\left\{\begin{array}{cc}0 & -L<t<0 \\ E \sin \omega t & 0<t<L\end{array}\right.$.
27. Find each of the directional derivatives.
a) $D_{u} f(2,0)$ where $f(x, y)=x e^{x y}+y$ and u is the unit vector in the direction of $\theta=\frac{2 \pi}{3}$.
b) $D_{u} f(x, y, z)$ where $g(x, y, z)=x^{2} z+y^{3} z^{2}-x y z$ in the direction of $v=(-1,0,3)$.
c) In what direction does f and g change most rapidly and what are the rate of change in these directions.

