Reg. No. : \qquad
Name : \qquad
IV Semester B.Sc. Degree CBCSS (OBE) Regular Examination, April 2021
(2019 Admission Only) CORE COURSE IN PHYSICS

4B04PHY : Electronics I
Time: 3 Hours
Max. Marks : 40

PART - A
(Short answer questions. Answer all questions. Each question carries 1 mark.)

1. What do you mean by biasing a PN junction diode? Compare the effect of forward and reverse bias on a PN junction.
2. What do you mean by the quiescent point of a transistor ?
3. What is the basic difference between a BJT and an FET ?
4. What is the basic advantage of MOSFET over FET?
5. How will you obtain the 1 's complement of a binary number? What is the 1 's complement of 10101?
6. Give truth table for a 2 input OR gate.
PART - B
(Short essay questions. Answer any 6 questions. Each question carries 2 marks.)
7. Draw typical forward current-voltage characteristics to illustrate the differences of Si and Ge diodes.
8. Using a suitable figure, illustrate the currents and their directions in a biased pnp transistor.
9. Write short note on the temperature effects on the performance of transistor circuits.
10. Draw the drain characteristics of an n-channel JFET under zero external bias indicating the different regions.
11. Discuss the basic working principle of a MOSFET.
12. Convert the binary numbers 1101101 and 0.1011 to decimal.
13. Determine the values of A, B, C and D that make the sum term $A+\bar{B}+C+$ \bar{D} equal to 0 . Similarly determine the values of A, B, C and D that make the product term $A \bar{B} C \bar{D}$ equal to 1 .
14. Using Boolean algebra techniques show that $A B+A(B+C)+B(B+C)=$ $B+A C$.

PART-C

(Problems. Answer any 4 questions. Each question carries $\mathbf{3}$ marks.)
15. A6.2V Zener diode is used to regulate an input voltage which fluctuates between 9 V and 12 V . It is connected across a load of $1 \mathrm{k} \Omega$ and a series resistance of 330Ω. Calculate the maximum and minimum values of the Zener current.
16. A transistor in CB configuration with current amplification factor $\mathrm{a}=0.92$ has an emitter current of 1 milli ampere. When the emitter circuit is open, the collector current is 50 micro amperes. Determine the total collector current.
17. In a transistor circuit, collector load is $4 \mathrm{k} \Omega$ and the zero-signal collector current is 1 milli ampere. Determine the operating point if $V_{C C}=10 \mathrm{~V}$. What will be the operating point if $\mathrm{R}_{\mathrm{c}}=5 \mathrm{k} \Omega$?
18. Define the basic FET parameters
i) ac drain resistance,
ii) transconductance and
iii) amplification factor.
19. Convert the octal numbers $13,25,140,7526$ and 6352.745 to binary.
20. State de Morgan's theorems and verify them using a truth table.
(Long essay questions. Answer any 2 questions. Each question carries 5 marks.)
21. Using a suitable circuit diagram, explain the working principle of a half wave rectifier with capacitor smoothing. Comment on the rectification efficiency of the circuit. Draw the output waveforms in the presence and absence of a capacitor filter.
22. Explain the voltage divider method of biasing a bipolar junction transistor circuit.
23. Compare the working principle of n-channel and p-channel JFETs.
24. Illustrate how a NAND gate be used to produce NOT, OR, AND and NOR gates.

