Reg. No.:
Name: $\qquad$

# I Semester B.Sc. Degree (CCSS - Regular) Examination, November 2014 

# (2014 Admn.) <br> COMPLEMENTARY COURSE IN PHYSICS <br> 1C01 PHY : Mechanics 

Time: 3 Hours
Max. Marks : 32
Instruction: Write answers in English only.
SECTION - A

Answer all. Very short answer type. Each question carries one mark.

1. The differential equation representing Simple Harmonic Motion $\qquad$
2. Young's Modulus is defined as $\qquad$
3. Expression for de-Broglie wavelength $\lambda=$ $\qquad$
4. Energy of a simple harmonic oscillator is $\qquad$
5. The proposer of Uncertainty Principle is $\qquad$

## SECTION - B

Answer any four. Short answer type. Each question carries two marks.
6. What is Poisson's ratio ? What are the theoretical limits of Poisson's ratio ?
7. State and prove perpendicular axis theorem.
8. Distinguish between transverse and longitudinal waves? Give one example for each.
9. What is radius of gyration?
10. Assuming the expression for moment of inertia of a ring, find the moment of inertia of a disc.
11. What is meant by Simple Harmonic Motion?
SECTION - C

Answer any three. Short essay/problem type. Each question carries three marks.
12. Derive an expression for couple per unit twist of a cylindrical rod.
13. What are the characteristics of a damped harmonic oscillator? Define Q-factor.
14. A body of mass 1 kg connected with a mass less horizontal spring of force constant $1 \mathrm{~N} / \mathrm{m}$ is set into Simple Harmonic Oscillations. Find the period of oscillation.
15. Calculate the de-Broglie wavelength of an electron accelerated through a potential difference of 100 V .
16. The uncertainty in the measurement of position of a particle is $0.3 \%$, what is the uncertainty in measuring the velocity of the particle.
SECTION - D

Answer any two. Long essay type. Each question carries five marks.
17. Derive an expression for the moment of inertia of a disk about an axis along a chord distant dfrom the centre of the disk.
18. Obtain time-independent Schrodinger equation.
19. Derive an expression for the time period of a simple harmonic oscillation.
20. Obtain an expression for the velocity of transverse vibrations in a stretched string.

