Reg. No. ${ }^{\text {: }}$ \qquad
Name: \qquad

V Semester B.Sc. Degree (CBCSS - Reg./Sup./Imp.)
 Examination, November 2018
 (2014 Admn. Onwards)
 CORE COURSE IN PHYSICS
 5B 08 PHY : Classical Mechanics and Relativity

Time: 3 Hours
Max. Marks : 40

SECTION - A

(Very short answer type - Each carries 1 mark - Answer all 4 questions)

1. When a particle moves under the action of central force its angular momentum is \qquad
2. If no external forces act on a system of particles, its linear momentum \qquad
3. Velocity of light is \qquad in all possible inertial frames of reference.
4. Momentum of a particle of velocity v and relativistic energy E is given by $p=$ $(4 \times 1=4)$
SECTION - B
(Short answer type - Each carries 2 marks - Answer 7 questions out of 10)
5. State the postulates of Special Theory of Relativity.
6. State D' Alembert's Principle and explain the concept of virtual work.
7. What are central forces? Give examples.
8. What do you mean by the terms Gravitational field and Gravitational potential ?
9. What is Centre of mass ? Find out the expression of position vector of Centre of mass of a system of particles.
10. Explain Twin Paradox.
11. State Kepler's Laws of Motion.

K18U 1488

||||||||||||||||||||||||||||||||||||

12. Deduce the expression for momentum of a particle with velocity v and relativistic energy E .
13. State the postulates of Special Theory of Relativity.
14. What do you mean by an inertial frame of reference?
SECTION - C
(Short essay/problem type - Each carries 3 marks - Answer 4 questions out of 6)
15. In the laboratory the life time of a particle moving with speed $2.8 \times 10^{8} \mathrm{~m} / \mathrm{sec}$., is found to be $2.5 \times 10^{-7} \mathrm{sec}$. Calculate the proper life time of the particle.
16. Find the momentum of an electron which is accelerated by a potential difference of 20 volts.
17. Show that escape velocity of a body from solar system, launched from the earth is $\sqrt{2 G M / R}$. (where $M=$ mass of sun $R=$ distance of earth from sun).
18. Generate the Lagranges equation for a simple pendulum.
19. What are the consequences of Lorentz transformation?
20. Give 2 examples for mass energy relation. Explain it briefly.

SECTION - D

(Long essay type - Each carries 5 marks - Answer 2 questions out of 4)
21. Comment on the motion of a particle under central force. What remains conserved there, Explain. What do you understand by spin and orbital angular momentum ?
22. Deduce the expressions for gravitational potential and field due to a solid sphere at various points and represent the potential variation with distance graphically.
23. State and prove Kepler's laws of planetary motion.
24. Derive an expression for kinetic energy of a relativistic particle. Hence deduce the Einstien's mass energy relation and write a note on it.

