Reg. No. :
Name : \qquad
Third Semester B.Sc. Degree (CBCSS - Reg./Supple./Imp.) Examination, November 2016
(2014 Adm. Onwards)
COMPLEMENTARY COURSE IN MATHEMATICS FOR COMPUTER SCIENCE

3C03 MAT - CS : Mathematics for Computer Science - III

Time: 3 Hours
Max. Marks : 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. Solve : $y^{\prime}+y^{4} \sin x=0$.
2. Find the Wronskian of the functions, $y_{1}=e^{t} \operatorname{sint}$ and $y_{2}=e^{t}$ cost.
3. Find the inverse Laplace transform of $\frac{3}{s^{2}+4}$.
4. Write the one-dimensional heat equation.
SECTION - B

Answer any 7 questions from among the questions 5 to 13 . These questions carry 2 marks each.
5. Solve : $y^{\prime}-y=e^{2 x}$.
6. Solve : $-\pi \sin \pi x \sinh y d x+\cos \pi x \cosh y d y=0$.
7. Find the orthogonal trajectories of the family of curves, $y=\frac{2 x}{5+k x}$.
8. Find a differential equation whose general solution is $y=c_{1} e^{2 t}+c_{2} e^{-3 t}$.
9. Find the inverse Laplace transform of $\frac{s+1}{s^{2}+2 s+10}$.

2 10. Find the Laplace transform of $5 \mathrm{e}^{-a t} \sin \omega \mathrm{t}$.

K16U 2114

11. Find the Fourier series of the function $f(x)=x+\pi$ if $-\pi<x<\pi$ and $f(x+2 \pi)=f(x)$.
12. Solve for $u=u(x, y): u_{x y}=-u_{x}$.
13. Show that $u=\sin 8 x \cos 2 t$ is a solution to the one-dimensional wave equation.
$(7 \times 2=14)$

SECTION -C

Answer any 4 questions from among the questions 14 to 19 . These questions carry 3 marks each.
14. Find an integrating factor and solve, $(y+x) d y=(y-x) d x$.
15. Find the real general solution to $x^{2} y^{\prime \prime}+0.6 x y^{\prime}+16.04 y=0$.
(2) 16. Solve the initial value problem, $y^{\prime \prime}+0.4 y^{\prime}+9.04 y=0, y(0)=0, y^{\prime}(0)=3$.
17. Applying Laplace transforms solve, $y(t)-\int_{0}^{t}(1+\tau) y(t-\tau) d \tau=1-\sinh t$.
18. Find the type, transform to normal form and solve : $x u_{x x}-y u_{x y}=0$.
19. Find the Fourier series of $f(x)=x^{2}$ in the interval $(-\pi, \pi)$.

SECTION - D

Answer any 2 questions from among the questions 20 to 23 . These questions carry 5 marks each.
20. Suppose that in Winter the daytime temperature in a certain office building is maintained at $70^{\circ} \mathrm{F}$. The heating is shut off at 10 pm and turned on again at 6 am . On a certain day the temperature inside the building at 2 am was found to be $65^{\circ} \mathrm{F}$. The outside temperature was $50^{\circ} \mathrm{F}$ at 10 pm and had dropped to $40^{\circ} \mathrm{F}$ by 6 am . What was the temperature inside the building when the heat was turned on at 6 am ?
(1) 21. Solve $\left(D^{2}-2 D+1\right) y=\frac{e^{x}}{x^{3}}$, by the method of variation of parameters.
22. Use the Laplace transform to solve the initial value problem, $y^{\prime \prime}-2 y^{\prime}+2 y=$ cost ;

$$
y(0)=1, y^{\prime}(0)=0 .
$$

23. Find (a) the Fourier cosine series and (b) the Fourier sine series of the function,

$$
f(x)= \begin{cases}1 & 0<x<1 \\ 2 & 1<x<2\end{cases}
$$

K16U2114

11. Find the Fourier series of the function $f(x)=x+\pi$ if $-\pi<x<\pi$ and $f(x+2 \pi)=f(x)$.
12. Solve for $u=u(x, y): u_{x y}=-u_{x}$.
13. Show that $u=\sin 8 x \cos 2 t$ is a solution to the one-dimensional wave equation.
$(7 \times 2=14)$

SECTION -C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.
14. Find an integrating factor and solve, $(y+x) d y=(y-x) d x$.
15. Find the real general solution to $x^{2} y^{\prime \prime}+0.6 x y^{\prime}+16.04 y=0$.
(2) 16. Solve the initial value problem, $y^{\prime \prime}+0.4 y^{\prime}+9.04 y=0, y(0)=0, y^{\prime}(0)=3$.
17. Applying Laplace transforms solve, $y(t)-\int_{0}^{t}(1+\tau) y(t-\tau) d \tau=1-\sinh t$.
18. Find the type, transform to normal form and solve : $x u_{x x}-y u_{x y}=0$.
19. Find the Fourier series of $f(x)=x^{2}$ in the interval $(-\pi, \pi)$.

SECTION -D

Answer any 2 questions from among the questions 20 to 23 . These questions carry 5 marks each.
20. Suppose that in Winter the daytime temperature in a certain office building is maintained at $70^{\circ} \mathrm{F}$. The heating is shut off at 10 pm and turned on again at 6 am . On a certain day the temperature inside the building at 2 am was found to be $65^{\circ} \mathrm{F}$. The outside temperature was $50^{\circ} \mathrm{F}$ at 10 pm and had dropped to $40^{\circ} \mathrm{F}$ by 6 am . What was the temperature inside the building when the heat was turned on at 6 am ?
(1) 21. Solve $\left(D^{2}-2 D+1\right) y=\frac{e^{x}}{x^{3}}$, by the method of variation of parameters.
22. Use the Laplace transform to solve the initial value problem, $y^{\prime \prime}-2 y^{\prime}+2 y=$ cost ;

$$
y(0)=1, y^{\prime}(0)=0
$$

23. Find (a) the Fourier cosine series and (b) the Fourier sine series of the function,

$$
f(x)=\left\{\begin{array}{ll}
1 & 0<x<1 \\
2 & 1<x<2
\end{array} .\right.
$$

