|||

K19U $\mathbf{Q} 275$

Reg. No. : \qquad
Name: \qquad

II Semester B.Sc. Degree (CBCSS - Reg./Supple./Improv.) Examination, April 2019
 (2014 Admission Onwards) COMPLEMENTARY COURSE IN PHYSICS
 2C02 PHY : Electricity, Magnetism and Thermal Physics

Time: 3 Hours
Max. Marks : 32
Instruction: Write answers in English only.
SECTION - A

Answer all. Very short answer type. Each question carries one mark.

1. \qquad is the potential difference that should be applied to the galvanometer to produce a deflection of 1 mm on a scale at a distance of 1 meter.
2. The time constant of C - R circuit is
3. The mathematical expression for first law of thermodynamics is
4. As length of the wire increases its resistivity
5. During isothermal process \qquad remains constant.
SECTION - B

Answer any four. Short Answer Type. Each question carries two marks.
6. A capacitor of capacitance $0.1 \mu \mathrm{~F}$ is first charged and then discharged through a resistance of 10 mega ohm. Find the time, the potential will take to fall to half its original value.
P.T.O.

K19U 0275

7. Define temperature co-efficient of resistance. Write down its expression.
8. What do you mean by thermal equilibrium and state zeroth law of thermodynamics.
9. State Biot-Savart Law.
10. State and explain first law of thermodynamics.
11. Explain how sharpness of resonance curve of a LCR depends on 'Q' factor.
SECTION - C

Answer any three. Short Essay/Problem Type. Each question carries three marks.
12. Find the efficiency of the Carnot's engine working between steam point and ice point.
13. Deduce Gauss's proof of inverse square law.
14. How will you use a potentiometer to calibrate a high range voltmeter?
15. One mole of a gas at $27^{\circ} \mathrm{C}$ expands adiabatically until its volume is doubled. Calculate the work done. $(\gamma=1.4)$
16. Compare Ballistic galvanometer and dead beat galvanometer.
SECTION - D

Answer any two. Long Essay Type. Each question carries five marks.
17. Derive the expression for magnetic induction at a point on the axis of a circular coil carrying current.
18. Discuss growth and decay of charge in C-R circuit.
19. Describe in detail an ideal heat engine. Derive an expression for the efficiency of the engine.
20. Derive expression for work done during isothermal and adiabatic process.

