

Reg. No.:

Name :

II Semester B.Sc. Degree (CCSS – Reg./Supple./Improv.)
Examination, May 2016
COMPLEMENTARY COURSE IN MATHEMATICS
2C02 MAT-PH: Mathematics for Physics and Electronics – II.
(2014 Adm. Onwards)

Time: 3 Hours Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin 7_x dx$. The transfer of the second of t
- 2. Give an example of a 3x3 symmetric matrix by a log section region of the first world. Et
- 3. Give an example of a 3×3 non zero singular matrix.
- 4. State the Cayley-Hamilton Theorem.

 $(4 \times 1 = 4)$

SECTION –B

ts. The area included between the carries y

waxes Find the volume at the solid generaled.

Answer any 7 questions from among the questions 5 to 13. They carry 2 marks each.

- 5. Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^4}$
- 6. Find the area of the cardioide $r = a (1 \cos \theta)$.
- 7. Find the length of the arc of the curve $y = \log \sec x$ from x = 0 to $x = \frac{\pi}{3}$.

e + take and the local accides as the ears of the general days as the party of the control of th

- 8. Find the volume of the solid obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the axis of x.
- 9. Evaluate $\int_{1.1}^{2} \int_{1}^{x} \frac{x^2}{y^2} dy dx$.
- 10. Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$.
- 11. Find the eigen values of the matrix $\begin{bmatrix} 5 & -2 \\ 9 & -6 \end{bmatrix}$.
- 12. If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$, find A^2 using Cayley-Hamilton theorem.
- Show that the eigen values of a diagonal matrix are the same as its diagonal elements.
 (7×2=14)

SECTION-C.

Answer any 4 questions from among the questions 14 to 19. They carry 3 marks each.

- 14. Find the perimeter of the loop of the curve $9ay^2 = (x 2a)(x 5a)^2$.
- 15. The area included between the curves $y^2 = x^3$ and $x^2 = y^3$ is rotated about the x-axis. Find the volume of the solid generated.
- 16. Determine the inverse of the matrix $\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$ by the Gauss-Jordan method.
- 17. Find by double integration the area of the region enclosed by curves $x^2 + y^2 = a^2$, x + y = a in the first quadrant.

18. Using Gauss elimination method, solve the linear system:

$$4y + 4z = 24$$

$$3x - 11y - 2z = -6$$

$$6x - 17y + z = 18$$
.

19. Find the defect of an eigen value of the matrix
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
. (4×3=12)

SECTION - D

Answer any 2 questions from among the questions 20 to 23. They carry 5 marks each.

- 20. Obtain the intrinsic equation of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$, the fixed point being the origin.
- 21. Change the order of integration in $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy$ and hence find its value.
- 22. Solve by Cramer's Rule:

$$3y + 4z = 14.8$$

$$4x + 2y - z = -6.3$$

$$x - y + 5z = 13.5$$

23. Find an eigenbasis and diagonalize:

(2×5=10)