

K19U 0269

Reg. No.:

II Semester B.Sc. Degree (CBCSS - Reg./Supple./Improv.) **Examination, April 2019** (2014 Admission Onwards) COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT - CS: Mathematics for Computer Science - II

Time: 3 Hours

Max. Marks: 40

To tell A factor identification

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- Give the reduction formula for ∫sinⁿ x dx.
- Evaluate ∫ sin⁵ x cos³ x dx.

HESWORN IN IS 19. These

- 3. What are skew symmetric matrices ?
- 4. What can you say about the main diagonal entries of a skew-symmetric matrix?

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the area of the ellipse, $x = a \cos t$, $y = b \sin t$.
- 6. Change the order of integration in $\int_{0}^{\infty} \int_{y}^{\infty} \frac{e^{-y}}{y} dx dy$, and hence find its value.

A LE CURVO Y = SIN X FROM X = 0 TUX

Exity - Vante 1211

go. Show that the surface of the sound abit works by 7. Evaluate $\int \int r^3 d\theta dr$.

8. If
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, find AB and AC.

- 9. Determine the rank of the matrix, $A = \begin{bmatrix} 0 & 1 & 2 2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1 \end{bmatrix}$.
- 10. Evaluate the determinant | 2 0 -4 6 | 4 5 1 0 | 0 2 6 -1 | -3 8 9 1 |
- 11. Show by example that orthogonal matrices need not be symmetric.
- 12. Obtain the characteristic polynomial of $\begin{bmatrix} -1 & -3 \\ 4 & 3 \end{bmatrix}$.
- 13. Let A be an idempotent matrix, meaning $A^2 = A$. Show that $\lambda = 0$ or $\lambda = 1$ are the only possible eigen values of A.

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

EC. E. C. WHILE BUILD BUILD SEED AND

- 14. Evaluate $\int_{0}^{a} \frac{x^4 dx}{\sqrt{a^2 x^2}}$
- 15. Obtain the intrinsic equation of the catenary y = a cos h (x/a), taking the vertex (0, a) as the fixed point.
- 16. Show that the surface of the solid obtained by revolving the arc of the curve $y = \sin x$ from x = 0 to $x = \pi$ about the x axis is $2\pi \left[\sqrt{2} + \log(1 + \sqrt{2})\right]$.

- 17. Prove that the surface generated by the revolution of the tractrix $x = a \cos t + \frac{1}{2}a \log \tan^2 t/2$, $y = a \sin t$ about its asymptote is equal to the surface of sphere of radius a.
- 18. Solve the system by using Cramer's rule:

$$x - y + 2z = -4$$

 $3x + y - 4z = -6$

$$2x + 3y - 4z = 4.$$

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Prove that the area of the region bounded by the curve $a^4y^2 = x^5(2a x)$, is to that of the circle whose radius is, a, is 5 to 4.
- 21. Evaluate $\iint_A r^2 \sin\theta \, d\theta \, dr$ over the area of cardioide $r = a(1 + \cos\theta)$ above the initial line.
- 22. Consider $A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 3 1 \\ -1 & 2 & 1 \end{bmatrix}$. Use the Gauss-Jordan elimination approach

to obtain A-1.

23. Diagonalize the following matrix, if possible

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$