

Reg. No.:....

Name:.....

Il Semester B.Sc. Degree (CCSS - Supple./Improv.) Examination, May 2016 COMPLEMENTARY COURSE IN MATHEMATICS 2C02 MAT : Differential and Integral Calculus (2013 and Earlier Admn.)

Appendiggs series from the following (weightings 2 each)

seads. Find the value e of the solid generated.

fit Expand cosx by Modernin's sames

dinal at the miduos concertained by

X = \$1 .01 = \$7 .5x

Time: 3 Hours

Max. Weightage: 30

Fill in the blanks:

a)
$$\frac{d}{dx}(\cosh^{-1}x) = \underline{\text{linear Linear entrollers}}$$
 of $\frac{d}{dx}(\cosh^{-1}x) = \underline{\text{linear Linear entrollers}}$

- b) The derivative of $(\log x)^{\log x}$ at x = e is equal to ___ We had added Letyleen'the drive vis-
- c) $\lim_{x\to 0} \frac{\sin x}{x} = \underline{\hspace{1cm}}$
- d) Determine the limit of $\frac{1 + \log x x}{1 2x + x^2} (x \to 1)$. (Weightage 1)

Answer any six from the following (weightage 1 each):

- 2. Determine the limit of $\frac{e^x e^{\sin x}}{x \sin x}$ (x \rightarrow 0).
- 3. Find the volume of the solid obtained by revolving one arc of the cycloid $x = a(\theta + \sin \theta), y = a(1 + \cos \theta)$
- 4. State Taylor's theorem.

th latel stainmouth

- 5. Verify Rolle's theorem for $f(x) = x(x + 3) e^{\frac{-x}{2}}$ in [-3, 0].
- 6. Prove that the radius of curvature of the catenary $y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{\frac{-x}{a}} \right)$ is $\frac{y^2}{a}$.

K16U 1105

7. If
$$z = x^2 \tan^{-1} \left(\frac{y}{x} \right) - y^2 \tan^{-1} \left(\frac{x}{y} \right)$$
. Prove that $\frac{\partial^2 z}{\partial y \partial x} = \frac{x^2 - y^2}{x^2 + y^2}$.

- 8. Find the area of the loop of the curve $r^2 = a^2 \cos \theta$.
- 9. Find the surface of the solid formed by revolving the cardiod $r = a(1 + \cos \theta)$ about the initial line.
- 10. Evaluate $\int_1^{\log 8} \int_0^{\log y} e^{x+y} dx dy$.

(Weightage 6×1=6)

Answer any seven from the following (weightage 2 each):

- 11. Evaluate $\iint r^2 \sin \theta \, dr \, d\theta$ over the area of the cardiod $r = a (1 \cos \theta)$ above the initial line.
- 12. The area included between the curve $y^2 = x^3$ and $x^2 = y^3$ is rotated about the x-axis. Find the volume of the solid generated.
- 13. Expand cosx by Maclaurin's series.
- 14. If $u = (1 2xy + y^2)^{-\frac{1}{2}}$ show that $x \frac{\partial u}{\partial x} y \frac{\partial u}{\partial y} = y^2 u^3$.
- 15. Find the surface generated by the revolution of an arc of the centenary $y = c \cos \frac{x}{c}$ about the axis of x.
- 16. Integrate: (i) sin3x dx,
- ii) sin⁴xdx.
- 17. If $p^2 = a^2 \cos^2 \theta + b^2 \sin^2 \theta$, prove that $\frac{d^2 p}{d\theta^2} = \frac{a^2 b^2}{p^3}$.
- 18. Find the area in the first quadrant bounded by the x-axis and the curve $x^2 + y^2 = 10$, $y^2 = 9x$.
- 19. If $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$, prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.
- 20. Find $\frac{dz}{dt}$ when $z = xy^2 + x^2y$, $x = at^2$, y = 2at.

(Weightage 7x2=14)

Answer any three from the following (weightage 3 each):

- 21. Find the volume bounded by the paraboloid $x^2 + y^2 = 16 z$, the cylinder $x^2 + y^2 = 4$ and the plane z = 0.
- 22. Expand $e^{a \sin^{-1} x}$ in powers of x by Maclaurin's theorem and hence obtain the value of e^{θ} .
- 23. Show that the evolute of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $(ax)^{\frac{2}{3}} (by)^{\frac{2}{3}} = (a^2 + b^2)^{\frac{2}{3}}$.
- 24. If u = f(r), where $r = \sqrt{x^2 + y^2}$, show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{d^2 u}{dr^2} + \frac{1}{r} \frac{du}{dr}$.
- 25. Show by double integration that the area lying inside the circle $r = a \sin \theta$ and outside the cardiod $r = a (1 \cos \theta)$ is $\frac{a^2}{4} (4 \pi)$. (Weightage 3×3=9)