Reg. No.: \qquad
Name: \qquad

Fifth Semester B.Sc. Degree (CBCSS - 2014 Admn. - Regular)
Examination, November 2016 CORE COURSE IN PHYSICS
5B08PHY : Classical Mechanics and Relativity

`Time : 3 Hours

Max. Marks : 40
Instruction : Answer the questions in English only.
SECTION - A
(Very short answer type-each carries 1 mark - answer all 4 questions.)

1. The dimensional formula for torque is same as that for \qquad
2. The rest mass of photon of frequency v is \qquad
3. The fundamental law of physics involved in Kepler's second law is \qquad
4. The Lagrangian equation for simple pendulum is given by \qquad
SECTION - B
(Short answer type-each carries 2 marks - answers 7 questions oút of 10)
5. Define a centre of mass frame of reference.
6. Explain why moving clock appears to go slow.
7. What was the aim of Michelson-Morley experiment?
8. Is it possible for a body to have energy without momentum? Explain.
9. Prove that angular momentum remains same for motion under central forces.
10. Explain the term gravitational self-energy.
11. How does mass vary with velocity ?
12. Why hydrogen escapes from earth's surface more readily than oxygen?

K16U 1726

13. What are cyclic or ignorable coordinates ?
14. Show that in the absence of an external force, the velocity of centre ofmass is a constant.
$(7 \times 2=14)$
SECTION - C
(Short essay/problem type-each carries 3 marks - answers 4 out of 6)
15. Write a short note on conservation of angular momentum and its importance in physics.
16. Using Lagrange's equation derive Newton's second law.
17. In the Michelson-Morley experiment what was the expected fringe shift if the effective length of each path is 6 m and light has $6000 \AA$ wavelength. (speed of earth $=3 \times 10^{4} \mathrm{~m} / \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).
18. Show that the escape velocity of earth is $\sqrt{2}$ times the velocity of projection of an artificial Satellite orbiting close around the sun.
19. A particle of mass m_{1} and velocity u_{1} collides directly with another particle of mass m_{2} at rest. Find the velocities after collision.
20. Derive relativistic law of addition of velocities and hence show that the law is in conformity with the principle of constancy of speed of light.
SECTION -D
(Long essay type-each carries 5 marks - answers 2 out of 4)
21. On the basis of Lorentz transformation equations, discuss the following kinematics 1) Length Contraction 2) Time dilation.
22. Show that the conservation of angular momentum of a system in a consequences of the rotational Invariance of its potential energy. Derive the expression for the distance of closest approach of a proton projected into Coulomb field of a heavy nucleus.
23. Deduce Kepler's laws of planetary motion from Newton's law of gravitation.
24. Write down Lagrange's equation of motion. Using Lagrangian formulation, find the equation of motion for the following systems 1) Atwood's machine 2) Simple pendulum.
