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Exp. No.2.1 

Spectrometer- i-d curve 

Aim: To study the relationship between the angle of incidence ‘i’ and the angle of deviation ‘d’ 

of a glass prism and hence to determine the refractive index of the material of the prism by 

drawing the graph of ‘i’ and ‘d’.   

Apparatus: Spectrometer, sodium vapor lamp, prism, reading lens etc. 

Theory: For a given prism, corresponding to a 

given angle of deviation there are two possible 

angles of incidence i1 and i2. These two angles 

are such that if one of the angles is the angle of 

incidence, the other angle will be the angle of 

emergence.  

Let i1 and i2 be the two angles of incidence 

and r1 and r2 be the corresponding angles of 

refraction for the given angle of deviation d. 

Then, 

   1 2i i  =  A + d (1) 

   1 2r r  =  A  (2) 

Fig.b gives the variation of angle 

of deviation d with angle of 

incidence i. When the angle of 

deviation is minimum, i1 = i2 = i,  

r1 = r2 = r and d = D. Then, from 

eqn.1 we get, 
 
       2i =  A + D  (3) 

         i =  
A D

2


  (4) 

From eqn.2, 

        r =  
A

2
   (5) 

 Refractive index of the material of the prism,        =  
sin i

sin r
  =  

A D
sin

2

A
sin

2

 
 
 

 
 
 

  (6) 

Procedure: All the preliminary adjustments of the spectrometer are made (refer Exp. No. 1.11 

practical-I). The prism is mounted on the prism table with its base is parallel and close to the 

clamp. The prism table is leveled either by observing the reflected images from both the sides of 

the prism or by using a spirit level. Then the prism is removed. 

Adjustment to set the prism for a particular angle of incidence, say ‘i’ : Now the telescope is 

brought parallel to the collimator and the direct image of the slit is obtained at the vertical wire 

: i-d curve for an equilateral prism of  = 1.62 Fig.b 
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of the cross wire. The reading on one of the verniers is noted. Now the telescope is released and 

turned through an angle  = 1802i as shown in the fig.c (dashed arrow represents the motion of 

the telescope) and it is clamped there. Place the prism on the prism table with one of the faces, 

say AB, facing the collimator. Then the vernier table (or prism table) is rotated to and fro so that 

the image of the slit reflected from the face AB is obtained on the vertical cross wire. The vernier 

table is clamped there. Now the prism is set for the angle of incidence i. [It may be convenient to 

set the two verniers at 0-180 for the direct image. But in this case the prism table alone is rotated 

to find the reflected image.] 

The telescope is then released, turned towards the refracted ray and the refracted image of 

the slit is obtained at the vertical cross wire. The readings on both the verniers are noted. Let it 

be ‘a’. Again the telescope is brought in a line with the collimator and direct image of the slit is 

obtained at the cross wire. The readings (b) on both the verniers are taken. The difference 

between ‘a’ and ‘b’ gives the angle of deviation. The angles of deviation for different angles of 

incident, say, i = 40, 45, 50 etc. [For prisms with   1.5 to 1.6, the range of i is 35 to 65 

and for prisms with,   1.6 to 1.7, the range of i is 40 to 70]. 

A graph is plotted with ‘i’ along the X-

axis and ‘d’ along the Y-axis as shown in 

fig.b. The angle of incidence corresponding to 

the angle of minimum deviation can be 

determined from the graph. Then by using 

eqns.1 and 3 the angle of the prism can be 

calculated and the refractive index is 

calculated by using the eqn.6.  
 

Precautions:  

 The vernier table and the prism table 

are initially adjusted at the proper 

positions (both the verniers are in a 

line perpendicular to collimator) so 

that the readings on both the verniers 

are conveniently taken. 

 To get the reflected and refracted ray 

simultaneously, the prism table must 

be set such that the reflected ray is on 

the side of the refracting edge (A) of 

the prism as shown in fig.c.  

 Reading lens must be used to observe the vernier readings. 

 If you are initially set the vernier table 0-180 for direct image, make sure that the final 

reading for direct image is still 0-180. If it is not 0-180, take the new direct reading. 

 Don’t forget to clamp the vernier table and the telescope after each adjustment. For 

taking the direct reading, the prism must be removed carefully without any change in the 

vernier table. 
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Observation and Tabulation of data: 

 Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 
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Result 

 Angle of the prism                  A =   …………. 

 Refractive index of the material of the prism,       =   ………….   

Standard data* 

Refractive index against air for mean sodium line (589.3 nm) 

    Crown glass 1.48  1.61 

   Flint glass 1.53  1.96 
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Exp.No.2.2 

Spectrometer-i1-i2 curve 

Aim: To study the relationship between the two angles of incidence (one is the angle of 

incidence i1 and the other is the angle of emergence i2) for a given angle of deviation. We also 

aim to study the variation of angle of emergence with angle of incidence and to draw the i1-i2 

curve.   

Apparatus: Spectrometer, sodium vapor lamp, prism, reading lens etc. 

Theory:  

Let i1 and i2, respectively, be the angle 

of incidence and the angle of emergence of a 

prism of angle A corresponding to the angle 

of deviation d. Then, 
 

   1 2i i  =  A + d  (1) 

   1 2r r  =  A   (2) 

Fig.b gives the variation of angle of 

emergence i2 with angle of incidence i1. 

When the angle of deviation is minimum, 

i1 = i2 = i,  r1 = r2 = r and d = D. Then, from 

fig.b,  

        i =  
OB OC

2


  (3) 

By eqn.1, 

      2i =  A + D  (4) 

      D =  2i  A  (5) 

By eqn.4, 

        i =  
A D

2


  (6) 

From eqn.2, 

        r =  
A

2
   (7) 

 Refractive index of the material of the prism,        =  
sin i

sin r
  =  

A D
sin

2

A
sin

2

 
 
 

 
 
 

  (8) 

Procedure: Preliminary adjustments of the spectrometer are made (refer Exp. No. 1.11 of 

practical-I) and the prism is mounted on the prism table with its base is parallel and close to the 

clamp. The prism table is leveled either by observing the reflected images from both the sides of 

the prism or by using a spirit level.  
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The angle of the prism is found out either by the supplementary angle method (refer Exp. 

No. 2.6 of practical-II) or by observing the reflected rays from both sides of the prism.  

Now the prism is set for a particular 

angle of incidence, say i1 = 40 as in the i-

d curve experiment. The telescope is then 

released and is brought in a line with the 

refracted ray. (The dashed curves indicate 

the motion of the telescope). The telescope 

is clamped there. By using the tangential 

screw of the telescope, the refracted image 

of the slit is made to coincide with the 

vertical wire.  

Now looking through the telescope 

the vernier table is rotated in such a 

direction that the refracted image moves 

towards the minimum deviation position 

(the refracted image moves towards the 

direction of direct ray). Continue the 

rotation of the vernier table in the same 

direction till the refracted image is 

returned at the vertical wire of the 

telescope. The vernier table is then 

clamped and the tangential screw of it is 

adjusted to get the refracted image on the 

vertical cross wire. 

The telescope is released and is rotated towards the reflected ray. (Reflected ray 2 in the 

fig.c). By adjusting the tangential screw of the telescope, the reflected image of the slit is 

obtained exactly on the cross wire. The readings on both the verniers are noted. (Use the reading 

lens). Let it be ‘a’. 

The telescope is again released. It is brought in the line of the collimator and the direct 

image of the slit is obtained on the cross wire. Again readings (b) on both the verniers are taken. 

The difference between the reading of the reflected image and the direct image gives 2=1802i2. 

From that i2 can be calculated.  

The experiment is repeated for different values of i1 = 45, 50, 55 etc. In each case i2 is 

calculated. A graph is drawn between i1 and i2. From the graph, the angle of incidence ‘i’ 

corresponding to angle of minimum deviation D can be found by using eqn.3. Hence D can be 

calculated using the equation D = 2i  A.  

Finally, the refractive index of the material of the prism is calculated using the eqn.8. 

Precautions: 

 See all the precautions given in the i-d curve experiment. 

 Draw the i1-i2 curve with same scale in both the axes. Then it is easy to find out the i = i1 

= i2 for minimum deviation from graph by simply drawing the bisector of the angle 

between X and Y axes (diagonal of squares on the graph). 

Observation and tabulation 

 Value of one main scale division (1 m s d) =  …………… 
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 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

Angle of the prism A 

 Ver I Ver II Mean 

2A 

 

A M S R V S R Total M S R V S R Total 

Reflected image from first face 

                        ‘a’ 

       

 

 

Reflected image from second 

face                 ‘b’ 

      

Difference between the above readings   2A = ab       2A = ab  
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angle of incidence 

‘a’ 

Reading corresponding to 

direct ray after the second 

reflection 
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Result 

 Angle of the prism            A =  ………. 

  Angle of incidence corresponding to minimum deviation, i =  ………. 

 Angle of minimum deviation            D  =  ………. 

 Refractive index of the material of the prism           =  ……….  

Standard data*: Same as in the experiment for i-d curve. 
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Exp.No.2.3 

Spectrometer-Cauchy’s constants 

Aim: To determine the constants in the Cauchy’s dispersion formula for the material of the 

prism. 

Apparatus: Spectrometer, mercury vapor lamp, prism, reading lens etc. 

Theory: Considering the microscopic properties of the bound charged particles of a transparent 

medium Cauchy developed a relation connecting the refractive index of the material and the 

wavelength of light passing through it. Cauchy’s relation between the refractive index  of the 

material and the wavelength  of the light is given by,  
 

  Refractive index,     =  
2

B
A

λ
        (1)  

where, A and B are constants for a transparent material and are called the Cauchy’s constants. 

(Do not confuse with constant A and the angle of the prism A). These constants can be 

determined by a method as follows. Let 1 and 2 be the refractive indices corresponding to the 

wavelengths 1 and 2 respectively. Then, (if 1 > 2) 
 

        1 =  
2

1

B
A

λ
    (2) 

       2 =  
2

2

B
A

λ
    (3) 

           1 2μ μ  = 
2 2

1 2

1 1
B

λ λ

 
 

 
 =  

2 2

2 1

2 2

1 2

λ λ
B

λ λ

 
 
 

 

        B =   
  2 2

1 2 1 2

2 2

2 1

μ μ λ λ

λ λ




  (4) 

From eqn.2 and 3, 

        A =  1 2

1

B
μ

λ
    (5a) 

Or,         A =  2 2

2

B
μ

λ
    (5b) 

If D is the angle of minimum deviation for a wavelength  when it passes through a prism of 

angle A , the refractive index  is given by, 

 

            =  

A D
sin

2

A
sin

2

  
 
 

 
 
 

      (6) 
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Cauchy’s constants can also be determined graphically. A graph is drawn with 
2

1

λ
 along 

the X axis and  along the Y axis (fig.a). The graph will be a straight line. Its slope gives the 

constant B and the Y intercept gives the constant A.  
 

Procedure: As usual, the preliminary adjustments, including the leveling of the prism table, of 

the spectrometer are made. The angle of the prism A  is determined as described in Exp.No.1. 

11 of practical-I or Exp. No. 2.6 of practical-II.  

The prism is then adjusted to obtain the refracted spectrum. It consists of different spectral 

lines with violet being deviated most and red the least. The prism is then adjusted to be in the 

minimum deviation position for the violet line as described in experiment number 11 and 12 of 

Part 1. Readings on both the verniers are taken. The prism is removed carefully and the readings 

on both the verniers for direct ray are noted. The difference between these readings gives the 

angle of minimum deviation for violet light. Similarly the angles of minimum deviation for the 

other colours are found out. Refractive indices of the material of the prism for various colours 

are calculated using eqn.6. The Cauchy’s constants are determined by the calculation and 

graphical methods.  

 

Precaution:  

 See all the precautions given in the i-d curve experiment.  

 The prism is set to the minimum deviation position for each spectral line and in each case 

the direct reading is to be taken.  

 

Observation and tabulation 

Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

Angle of the prism A  

 Ver I Ver II Mean 

2 A  
 

A  M S R V S R Total M S R V S R Total 

Reflected image from the first 

face                 ‘a’ 

       

 

 

Reflected image from the 

second face     ‘b’ 

      

Difference between the above readings 2 A  = ab       2 A  = ab  
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Determination of refractive indices for various colours 
C

o
lo

u
rs

 o
f 

sp
ec

tr
al

 l
in

es
 

 

W
av

el
en

g
th

 
 

Reading corresponding to  the 

minimum deviation position 

of the refracted ray  

‘a’ 

Reading corresponding to the 

direct ray  

‘b’ 

 

Angle of 

minimum 

deviation 

D = ab  
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Calculation of Cauchy’s constants 

1 2 1 2 B A 

      

      

      

Mean   

  

 Cauchy’s constants from graph     A =  ………..            B =  ……….. 

Result 

 Angle of the prism          A  =  ………. 

 Cauchy’s constants            A =  ………. 

              B =  ……….. 

Standard data* 

Mercury spectral lines 

Colour Wavelength in nm 

Yellow I 579.06 

Yellow II 576.96 

Green 546.07 

Greenish blue 491.60 

Blue 435.83 

Violet I 407.78 

Violet II 404.65 
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Exp.No.2.4 

Spectrometer – Diffraction grating-normal incidence 

Aim: To determine the grating element of the given diffraction grating by using the light of 

known wavelength (green) and hence to determine the wavelength of the prominent lines of 

mercury spectrum by normal incidence method. 

Apparatus: Spectrometer, mercury vapor lamp, diffraction grating, reading lens etc. 

Theory: An arrangement consisting 

of a large number of parallel slits of 

equal width and separated from one 

another by equal opaque spaces is 

called a diffraction grating. A grating 

is made by ruling a very large number 

(about 15000 lines per inch) of fine, 

equidistant and parallel lines with a 

diamond point on an optically plane 

glass plate. The ruled lines act as 

opaque region and the space between 

any two lines is transparent and it acts 

as slits. Such a grating is called a 

plane transmission grating.  
The directions of the principal maxima 

of a grating in normal incidence are given by, 
 

    b c sinθ  =  n   ; n = 0, 1, 2…. (1) 

where, ‘b’ is the width of a slit and ‘c’ is the 

width of the opaque region and  b c  is 

called the grating element. If there are N 

number of rulings per metre,  N b c  = 1 

and then, 

               sin =  Nn      (2) 

where, n = 0, 1, 2…… is the order of the 

spectrum,  is the angle of diffraction and  

is the wavelength of the light used.  
 
Procedure 

Adjustments to set the grating for normal incidence: The telescope is turned towards the 

white wall and the eye- piece is focused on the cross wires. Then the telescope is adjusted to 

receive the parallel beam of light from a distant object. The telescope and the collimator are now 

brought in a line and the collimator is adjusted to produce parallel beam of light emanated from 

the given source so that a clear image of the slit falls on the cross wire. This position of the 

telescope is noted by taking reading on one of the verniers. The telescope is now turned 90 and 

is clamped.  
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Fig.a 
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Next the grating is mounted on the prism table with its ruled surface facing the collimator such 

that the rulings parallel to the slit and the prism table (or vernier table) is rotated till the reflected 

image from one face of the grating coincides with the vertical 

wire. If necessary, the leveling screws of the prism table are 

adjusted such that the reflected image is divided by the 

horizontal wire and again the 

vernier readings are noted. Then 

the vernier table is rotated 

exactly through 45(or 135) so 

that the ruled surface of the 

grating faces the incident light. 

In this position the grating is 

normal to the incident light.  
Determination of grating element: The grating can be 

standardized as follows. Use the light of known wavelength 

(green of mercury spectrum) to illuminate the slit and find out 

the angle ‘’ for the corresponding spectral line. Then,  
 

     b+c = 
nλ

sinθ
 =  

1

N
      (3) 

Or,          N =  
sinθ

nλ
    (4) 

Determination of angle of diffraction for the unknown 
wavelength: The slit is illuminated with the light whose 

wavelength is to be determined. Now the telescope is rotated to the 

left of the direct image till the vertical wire coincides with the first 

order spectral line of the unknown wavelength and the readings of 

both the verniers are noted. Then rotate the telescope to the right 

side till the vertical wire coincides with the spectral line of the same 

order on the right side of the direct image and the vernier readings 

are again noted. The difference between the two readings of the same vernier gives 2 for first order. 

Wavelength  can be calculated using  =  b c sinθ  = 
sin θ

Nn
. While determining the wavelengths 

of spectral lines of mercury, take readings successively from the red line on one side to the red line 

on the other side. Experiment can be repeated for other orders of the spectrum.  

Precautions 

 See all the precautions given in the i-d curve experiment.  

 If the spectral lines are not bright and sharp rotate slightly the slit in its plane so as to make 

the rulings parallel to the slit. 

Observation and tabulation 

  Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

2 

Ruled face 

Fig.c 
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 Yellow I                  

Yellow II                  

Blue-green                  

Blue                  

Violet I                  

Violet II                  

 

Green 

Wavelength of green line of mercury  =  546.07 nm N 

                 

 Yellow I                  

Yellow II                  

Blue-green                  

Blue                  

Violet I                  

Violet II                  

 

Green 

Wavelength of green line of mercury  =  546.07 nm N 

                 

 

Result 
  Number of lines per metre of the grating   N =  ……….. 

 Grating element       1/N =  ……….. 

 The prominent lines of mercury spectrum are determined and are recorded in the tabular 

column. 

Standard data* 

Mercury spectral lines 

Colour Wavelength in nm 

Yellow I 579.06 

Yellow II 576.96 

Green 546.07 

Greenish blue 491.60 

Blue 435.83 

Violet I 407.78 

Violet II 404.65 
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Exp. No. 2.5 

Spectrometer-Grating-minimum deviation 

Aim: To determine the grating element of the given diffraction grating by using the light of 

known wavelength (green) and hence to determine the wavelength of the prominent lines of 

mercury spectrum by minimum deviation method. 

Apparatus: Spectrometer, mercury vapor lamp, diffraction grating, reading lens etc. 

Theory: Let i be the angle of incidence and n be the angle of diffraction corresponding to the 

n
th

 order spectrum. The path difference between the corresponding rays is  
 

        EF + FG =       nb c sin i b c sinθ      (1) 

For the n
th

 order primary maximum, 

           nb c sin i b c sinθ    =  n     (2) 

        n nθ i θ i
2 b c sin cos

2 2

    
    

   
 =  n 

     nθ i
sin

2

 
 
 

 =  

  n

nλ

θ i
2 b c cos

2

 
  

 

    (3) 

The angle of deviation of the diffraction beam is, 

  nθ i  =  

 

1

n

nλ
2sin

θ i
2 b c cos

2



 
  
 

    
   

  (4) 

For minimum deviation, nθ i
cos

2

 
 
 

must be maximum = 1. That is, nθ i

2


  =  0, or, nθ i . 

Then, the angle of minimum deviation,   D  =  nθ i  = 2n  (5) 

By eqn.2,          
D D

b c sin sin
2 2

    
     

    
 =  n   

       
D

2sin
2

 
 
 

 =   
 

nλ

b c
  =  Nn       (6) 

where,  b c  is the grating element and N is the number of rulings per metre.  

Procedure: The preliminary adjustments of the spectrometer are made. The grating is mounted 

vertically on the prism table with its ruled surface facing the collimator such that the rulings 

parallel to the slit.  The prism table (vernier table) is rotated till the plane of the grating is 

approximately normal to the incident light. On either side of the direct ray the diffracted 

spectrum are formed.  

Determination of grating element: The grating can be standardized as follows. The green line 

(known wavelength) of the first order diffracted spectrum on one side (say, the left side) is 

i n 

F 

c 

E 

b 

G 

Fig.a 
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viewed through the telescope. The vernier table is slowly rotated 

so that the green line moves towards the position of direct image. 

The telescope also is moved in the direction of motion of the 

green line. The rotation of the vernier table and telescope are 

continued till at a particular position the green line is found to 

remain stationary for a moment and then begins to move in the 

opposite direction. By adjusting the vernier table very carefully 

the green line is kept at the position where it just turns back. Now 

the vernier table is clamped and the telescope is made to coincide 

with the green line. The readings on both the verniers are taken. 

The telescope is then released and is made to coincide with the 

direct image. The readings on both the verniers are again noted. 

The difference between these two readings gives the angle of 

minimum deviation for green line. Next the green line on the other 

side (right) of the direct image is viewed and its angle of 

minimum deviation is determined. Then the grating element and 

the number of lines per metre are calculated using the equations,  
 

         N =  

D
2sin

2

nλ

 
 
 

     (7) 

                         b + c =  
1

N
       (8) 

Determination of angle of diffraction for the unknown wavelength: Using the same method 

mentioned above, the angles of minimum deviation for other colours of the spectrum are 

determined and the wavelengths are calculated using the equation, 
 

 =  

D
2sin

2

Nn

 
 
 

   

Experiment can be repeated for other orders of the spectrum. 

Precautions 

 See all the precautions given in the exp.no.2.1.  

 If the spectral lines are not bright and sharp rotate slightly the slit in its plane so as to 

make the rulings parallel to the slit. 
 

Observation and tabulation 

  Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

D 

Ruled face 

Fig.b 
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Order of the spectrum, n =  ……… 
  

 
 

 

 

 

Colour of 

the spectral 

lines 

 

Reading corresponding to  

the diffraction spectral 

lines   

‘a’ 

Reading corresponding 

to  the direct image   

‘b’ 

 

Difference 

D = ab  

 

M
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n
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h
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W
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en

g
th

  


 

    

Ver 1 Ver II Ver 1 Ver II 
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 L
ef

t 
si

d
e 

o
f 

d
ir

ec
t 

im
ag

e 

Yellow I                  

Yellow II                  

Blue-green                  

Blue                  

Violet I                  

Violet II                  

Green                  

R
ig

h
t 

si
d
e 

o
f 

d
ir

ec
t 

im
ag

e 

Yellow I                 

Yellow II                

Blue-green                

Blue                

Violet I                

Violet II                

 

Green 

Wavelength of green line of mercury  =  546.07 nm N 

                 

 

Draw another tabular column for second order. 

Result 

  Number of lines per metre of the grating   N =  ……….. 

 Grating element       1/N =  ……….. 

 The prominent lines of mercury spectrum are determined and are recorded in the tabular 

column. 

Standard data*: Same as given for normal incidence method. 
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Exp.No.2.6 

Small angled prism- normal incidence & normal emergence 

Aim: To find the refractive index of the material of the given small angled prism by setting the 

prism for (1) normal incidence and (2) normal emergence. 

Apparatus: Spectrometer, sodium vapor lamp, small angled prism, reading lens etc. 

Theory: For a given prism, corresponding to a given angle of deviation there are two possible 

angles of incidence i1 and i2. These two angles are such that if one of the angles is the angle of 

incidence, the other angle will be the angle of emergence. So these two angles are 

interchangeable. In the following experiment we make use of this property.  

Let i1 and i2 be the two angles of incidence and r1 and r2 be 

the corresponding angles of refraction for the given angle of 

deviation d. Then, 

            1 2i i  =  A + d  (1) 

               1 2r r  =  A   (2) 

Normal incidence: In this case the incident ray is normal to one 

of the refracting faces (AB) of the prism. Then, i1 = 0 and r1 = 0. 

Thus, by eqn.1, 

           i2  =  A+ d  (3)  

And by eqn.2,           r2 =  A   (4) 

 Refractive index,     =  2

2

sin i

sin r
   =  

 sin A d

sin A


     (5) 

Normal emergence: In this case the emergent ray is normal to the face (AC) of the prism. Then, 

i2 = r2 = 0. Hence, i1 =  A+ d and r1 = A. Thus, 

  Refractive index,    =   1

1

sin i

sin r
   =    

 sin A d

sin A


 =  

 
1

1

sin i

sin i d
   (6) 

Procedure: All the preliminary adjustments of the spectrometer are made. The small angled 

prism is then mounted on the prism table with its base parallel and close to the clamp. 

d 

A 

i1 
i2 

C B 

Fig.a 

Fig.b 

A 

C 
B 

 

A 

B 

C 

Fig.c 
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To find the angle of the prism by supplementary angle method: The telescope is clamped 

nearly normal to the collimator. The vernier table is slowly rotated until the reflected image of 

the slit from one of faces, say AB, is obtained on the cross wire of the telescope (fig.b). The 

vernier table is then clamped and using its tangential screw the image is made to coincide exactly 

with the vertical wire. The readings on both the verniers are noted. Then the vernier table is 

released and is rotated through an angle  as shown in fig.b such that the reflected image from 

the other face (AC) is obtained on the cross wire of the telescope (fig.c). After making the fine 

adjustments of the vernier table, the readings on both the verniers are taken. The difference 

between the two readings gives  and (180) gives the angle of the prism.  

To set the prism for normal incidence: (We follow the same method as in the case of grating 

normal incidence). The prism is removed from the prism table. The telescope is brought in a line 

with the collimator and the direct image is made to coincide with the vertical cross wire. This 

position of the telescope is noted by taking reading on one of the verniers. The telescope is now 

turned 90 and is clamped.  

Next the prism is 

mounted on the prism table 

with one of its refracting 

surface facing the collimator 

and the prism table (vernier 

table) is rotated till the 

reflected image from that face 

of the prism coincides with the 

vertical wire (fig.d). If 

necessary the leveling screws 

of the prism table are adjusted 

such that the reflected image is 

divided by the horizontal wire 

and again the vernier readings 

are noted. Then the vernier 

table is rotated exactly through 

45 in the proper direction so 

that the surface facing the 

collimator now becomes 

normal to the incident light 

(fig.e). The vernier table is clamped in this position. 

Determination of the angle of deviation in normal incidence: The telescope is released and is 

brought in the line of refracted ray (fig.e). By making the fine adjustments with the tangential 

screw of the telescope the refracted image is obtained exactly on the vertical cross wire. The 

readings on both the verniers are noted. The prism is then removed carefully without changing 

the vernier table. The telescope is released and is made to coincide with the direct image. The 

readings on both the verniers are again noted. The difference between these two readings gives 

the angle of deviation. The refractive index is calculated by the eqn.5.  

Normal emergence: To find the angle of deviation and the angle of incidence at the first face 

when the ray undergoes normal emergence, we make use of the property of the prism that the 

incident and the emergent rays are interchangeable.  

Fig.d 

A 

C 

B 

45 

d 

B 

C 

Fig.e 

45 

45 
90 

A 



20                                            Optics & Electricity  Practical II 

 

The prism is again set for normal incidence and the refracted image is made to coincide 

with the vertical cross wire. After clamping the telescope the vernier table is released and is 

rotated such a direction that the refracted image moves towards the minimum deviation position. 

The rotation of the vernier is continued in the same direction until the refracted image returns to 

the cross wire. The vernier table is then clamped at this 

position and the fine adjustment of the vernier is done if 

necessary. Now the prism is set for normal emergence at 

the second face (fig.f). The readings on both the verniers 

are taken. Let it be ‘a’.  

The telescope is then released and is brought in the 

line of the reflected image from the first face. By 

making fine adjustments the reflected image is made to 

coincide with the vertical cross wire and readings on 

both the verniers are noted. Let it be ‘b’.  

The prism is then removed carefully. The 

telescope is brought in the line of the direct ray and the 

readings on both verniers are noted (c). The difference 

between the refracted image readings and the direct 

image readings (ac) gives the angle of deviation 

corresponding to the normal emergence. The difference 

in the readings between reflected image and the direct 

image (bc) gives  = 1802i1, from which i1 can be 

calculated. Finally the refractive index of the material of 

the prism is calculated using eqn.6.   

 If the image is not in field of view of the telescope make sure that the prism table is 

leveled. Looking through the prism with naked eye (without telescope) you can see the 

image and judge its direction which helps to know whether it passes through the field of 

view of the telescope and the leveling of vernier is needed. 

Observation and tabulation 

  Value of one main scale division (1 m s d) =  …………… 

 Number of divisions on the vernier      n =  …………… 

 Least count    (L C) =  
Value of 1 m s d

n
 =  …………… 

[One degree =  60 minute,  (1 = 60 )] 

Angle of the prism A (Supplementary angle method) 

 Ver I Ver II Mean 

 

 

A=180 M S R V S R Total M S R V S R Total 

Reflected image from first 

face                ‘a’ 

       

 

 

Reflected image from second 

face                 ‘b’ 

      

Difference between the above readings  = ab        = ab  

 

d 

B 

C 

Fig.f 

A 
90 

i1 
i1 

Refracted ray 

Reflected ray 

In
cid

en
t ray

 

 = 180  2i1 
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To set prism for normal incidence   

 Ver I Ver II 

Direct reading   

Reading at which telescope is to be set = Direct reading + 90 =   

Reading corresponding to the reflected image   

Reading at which vernier is to be set = Reflected reading  45 =   

 

To find angle of deviation ‘d’ for normal incidence 

Reading corresponding to Ver I Ver II Mean d 

M S R V S R Total M S R V S R Total 

Refracted image       ‘a’        

 Direct image   ‘b’       

Difference between the above readings d = ab       d = ab  

 

 Refractive index of the material of the prism,        =  
 sin A d

sin A


  =  …………. 

To set prism again for normal incidence (for normal emergence method)   

 Ver I Ver II 

Direct reading   

Reading at which telescope is to be set = Direct reading + 90 =   

Reading corresponding to the reflected image   

Reading at which vernier is to be set = Reflected reading  45 =   

 

To find angle of deviation ‘d’ and angle of incidence i1 for normal incidence 

Reading corresponding to Ver I Ver II Mean  

d 

Mean 

 M S R V S R Total M S R V S R Total 

Refracted image       ‘a’        

 

 

 Reflected image  ‘b’       

Direct image   ‘c’       

Difference between the readings       ac = d  ac = d  

Difference between the readings       bc =   bc =   

 

 Angle of incidence at the first face for normal emergence, i1  = 
180 θ

2


 =  …….. 

 Refractive index of the material of the prism              =
 

1

1

sin i

sin i d
  =  …….. 

Result 
 Mean refractive of the material of the prism,         =  ………. 

Standard data*: Same as given for normal incidence method. 
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Exp.No.2.7 

Air Wedge-Diameter of a thin wire 

Aim: To find the diameter of a thin wire by measuring the width of the interference band 

formed by an air wedge arrangement with this thin wire and two plane glass plates.  

Apparatus: An air wedge, sodium vapour lamp, travelling microscope, reading lens etc. 

Theory: An air wedge is produced by two optically plane 

rectangular glass plates in contact with one pair of the edges and a 

thin wire, whose diameter is to be determined, is kept in between 

the plates near the other end parallel to the line of contact of the two 

plates.  

If the angle between the two glass plates is small and the ray 

incident normally, the approximate path difference between the two 

reflected rays from the upper and lower surfaces of the air film is 

given by, 

          =  2tin medium    
λ

2
  =  2tin air    

λ

2
 

Since when the reflection takes place at the boundary of an optically denser medium (lower 

surface of the air film) the reflected ray undergoes a phase change  or an equivalent path 

difference /2. ( is the refractive index of the thin wedge shaped film in between the glass 

plates. For air wedge  = 1). For constructive interference path difference ‘’ is an even multiple 

of /2. Thus, 
 

          2t   
λ

2
  =  

λ
2n

2
 where, n = 0, 1, 2, 3… 

   i.e.,        2t =   
λ

2n+1
2

, where, n = 0, 1, 2, 3…        (1) 

   For destructive interference path difference ‘’ is an odd multiple of /2 . Thus, 

         2t   
λ

2
  =   

λ
2n 1

2
  

Or,         2t =  
λ

2n
2

  =  n, where, n = 0, 1, 2, 3…       (2) 

If yn is the distance of the n
th

 dark fringe from the line of contact of the two glass plates, t = yn. 

Then, eqn.2 becomes, 
 
             2 yn =  n           (3) 

For (n+1)
th

 dark fringe,      2 yn+1 =   n 1 λ          (4) 

Subtracting eqn.3 from eqn.4, we get, 

                    n+1 n2μ y y θ  =    

Therefore, fringe width,  = n+1 ny y  =  
λ

2μθ
         (5) 

 
yn 

d 

l 
Fig.a 
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From eqn.1 we can also show that the distance between two consecutive bright fringes 

n+1 n

λ
x x

2μθ
   . If an air wedge is formed by placing a thin wire of diameter ‘d’ in between the 

glass plates at a distance ‘l’ from the line of contact of the two glass plates, the fringe width is 

given by, 

         =  
λ

2θ
 =  

λ

2d

l
    (6) 

Since  = 
d

l
 and for air  = 1.  

Procedure: Light from the sodium lamp is allowed to 

fall on the glass plate G1 kept at 45 with the horizontal. 

The air wedge is placed such that the reflected light from 

the glass plate G1 falls normally on it. The interference 

pattern is viewed from above by the travelling 

microscope as shown in fig.b. The pattern consists of 

large number of equally spaced alternate dark and bright 

bands as shown in fig.c. The microscope is 

moved towards one of the sides, say left, 

and one of the cross wires is made to 

coincide with any of the dark line, say n0. 

The microscope is then moved in the 

opposite direction. (Remember now 

onwards the tangential screw is rotated only 

in one direction to avoid the backlash 

error). It is then made to coincide with the 

n
th

 dark line and the microscope reading on 

the horizontal scale corresponding to it is 

noted. Then the microscope is moved and 

the cross wire is made to coincide with the dark lines (n+3), (n+6), (n+9), ……….upto (n+27) 

and the corresponding readings are noted. From these observations find out mean band width . 

To find the distance l between wire and the line of contact of the glass plates take 

microscope readings corresponding to the line of contact and the wire. The difference between 

these readings gives ‘l’. (Microscope measurement is not essential).  

Knowing the values of  and l and assuming the wavelength of sodium light (589.3 nm) the 

diameter of the wire can be calculated using the equation 
λ

d
2β

l
 .  

Precautions 
 The glass plate G1 should be 45 with the light from the sodium lamp. 

 The glass plate G1 should be oriented such that the light from the sodium lamp incident at 

the inner side of it. This helps the incident light to reflect towards the air wedge.  

 To see the interference bands clearly focus the microscope. The objective lens of the 

microscope must be at a certain distance from the air wedge. This can be achieved by 

adjusting the main clamping screw and the rack and pinion arrangement of the 

microscope. 

M 

G1 

d 

l 

Light from 

Sodium lamp 

Fig.b 

n+3 

n+12 n0 n+18 n+24 n+6 

n+15 n+21 n+27 n+9 

Fig.c 

n 
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 In order to avoid the backlash error of the travelling microscope, initially the tangential 

screw of the microscope is rotated in a direction and the cross wire is moved from back 

of the n
th

 line and is then made to coincide with the n
th

 line. The tangential screw should 

not be rotated in the opposite direction (or to and fro) while coinciding with the first line 

and throughout the experiment. By mistake, if you have moved the microscope in the 

opposite direction while taking the reading give up all the readings taken and do the 

experiment from the beginning itself. 

 Before starting to take readings ensure that we can move the microscope from the n0
th

 

line to more than n+30 lines. If it is not so loose the main screw of the vernier and loosen 

or tighten sufficiently the tangential screw and then tighten the main screw. 

Observation and tabulation 

  Value of one main scale division (1 m s d) =  ………. cm 

 Number of divisions on the vernier       n =  ………. 

 Least count     =    
1 m s d

n
 =  ……… cm 

Determination of band width 

Number 

of bands 

Microscope readings Width of 

15 bands 

cm 

Mean width 

of 15 bands w 

cm 

Band width 

 = w/15 

m 

M S R 

cm 

V S R Total 

cm 

n       

n+3     

n+6     

n+9     

n+12     

n+15     

n+18    

n+21    

n+24    

n+27    
   
 Distance between the wire and the line of contact of the plates   l =  ………. m 

 Diameter of the wire,          d =  
λ

2β

l
 =        =  …….. m 

 Angle of the wedge,           =   
d

l
 =  

λ

2β
 =   =  ……… radian 

Result 

  Diameter of the wire,          d =  ………. M 

Angle of the wedge,           =  ………. radian 

Standard data* 

 Wavelength of sodium light,  = 589.3 nm. 
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Exp. No. 2.8 

Newton’s Rings by reflected light- wavelength of sodium light 

Aim: To determine the wavelength of sodium light by forming Newton’s rings due to reflected 

light. 

Apparatus: Newton’s rings arrangement, sodium vapour lamp, travelling microscope, reading 

lens etc. 

Theory: The phenomenon of Newton’s rings is a special case of interference in a thin film of 

air of slowly varying thickness. When a plano-convex lens (or convex lens) of large focal length 

is placed in contact with a plane glass plate such that an air film is enclosed in between the 

curved surface of the lens and the plane glass plate. When monochromatic light is allowed to fall 

normally on such a film we get a central dark spot surrounded by alternatively bright and dark 

circular rings when viewed the reflected light. 

   Theory of the wedge shaped film shows that the effective path difference of the rays reflected 

from the upper and lower surfaces of the thin film is, 
 

        =  2μt cos r θ    
λ

2
  (1) 

where, r is the angle of refraction,  is the 

angle of wedge and  is the refractive index of 

the wedge shaped film (for air  = 1). The 

additional path difference /2 is due to the 

phase change  occurs when the reflection 

takes place at the lower surface of the film. For 

normal incidence r  = 0, and if  is small, the 

effective path difference, 
 

         =  2t   
λ

2
   (2) 

Diameter of dark rings: The condition for dark ring is that the path difference is equal to odd 

multiple of 
λ

2
  

i.e.                =    2t   
λ

2
 =   

λ
2n 1

2
 , where, n = 1, 2, 3…….  

Or,       2t =  n, where, n = 1, 2, 3…….           

For air,        2t =  n, where, n = 1, 2, 3…….       (3) 

Let ‘R’ be the radius of curvature of the plano-convex lens. Consider a point ‘P’ where the 

thickness of the film is ‘t’ and radius of the ring through ‘P’ is ‘r’. Then from the property of the 

circle, (refer fig.b), 
 
        PAAQ =    BAAO 

 i.e.      r
2
 =    2R t t  =  2Rt  t

2
 

G2 

L 

O G2 
O 

P t 

2
R


t 

t 

A 
r Q P 

L 

Fig.a Fig.b 

B 
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In actual practice t << R. Thus we can neglect t
2
 in comparison with 2Rt. 

         r
2
 =    2Rt   (4) 

Then by eqn.2,      2

nr  =  nR 

Or,         2

nD  =  4nR   (5) 

For (n+k)
th

 dark ring,     

                          2

n+kD  =    4(n+k)R = 4nRλ+ 4kRλ  

      2

n+kD   2

nD  =  4kRλ  

         =   
2 2

n+k nD D

4kR


    (6) 

Procedure: The Newton’s rings arrangement consists of  a plano-convex lens or a biconvex 

lens ‘L’ of large focal length ( 100 cm) placed over an optically plane glass plate G2 as shown 

in fig.c. The light from sodium lamp is allowed to fall on the glass plate G1 kept at 45 with the 

horizontal. The reflected light from the glass plate G1 falls on the Newton’s rings arrangement. 

The interference pattern is viewed from above by the travelling microscope as shown in fig.c. 

The pattern consists of large number of alternate dark and bright rings as shown in fig.d. The 

microscope is moved towards one of the sides, say left, and one of the cross wires is made to 

coincide with 25
th

 dark ring. The microscope is then moved in the opposite direction. 

(Remember now onwards the tangential screw is rotated only in one direction to avoid the 

backlash error). It is then made to coincide with the 20
th

 dark ring and the microscope reading on 

the horizontal scale corresponding to it is noted. Then the microscope is moved and the cross 

wire is made to coincide with the 18
th

, 

16
th

, 14
th

, …… up to 20
th

 dark ring on the 

other side and the corresponding readings 

are taken. The difference between the 

readings on the left and the right of any 

ring gives the diameter of that ring. The 

diameters of the 20
th

, 18
th

, ……., 2
nd

 

rings are found. The square of the 

diameters and 2 2

n+k nD D  are calculated 

for chosen ‘n’ and ‘k’ (say, n = 10, 8, 6, 

4, 2 and k = 10).  

The focal length ‘f’ of the lens can 

be determined by plane mirror method or 

u-v method. In plane mirror method the 

plane mirror is held behind the lens and 

the distance between the object and the 

lens is changed until a clear image of the 

object is seen side by side of the object as 

shown in fig.e. Then the distance 

between the object and the lens gives the 

focal length ‘f’.  
Newton’s rings by reflected light  

2nd ring  2nd ring  

2
0

th
 r

in
g

  

2
0

th
 r

in
g

  

2
5

th
 r

in
g

  

2
5

th
 r

in
g

  

Fig.d: 

Cross wire movement  

M 

G1 

G2 

L 

Light from 

Sodium lamp 

O 

Fig.c 



Practical-II M C T 27 

The radius of curvature of 

the lens is determined by Boy’s 

method. In this method a dark 

screen (frame of the plane mirror) 

is held behind the lens and the 

side by side image is obtained by 

changing the distance between the 

lens and the object. The distance 

‘d’ is measured and the radius of 

curvature is calculated using the 

formula 
fd

R
f d




. Finally, the 

wavelength is calculated using 

eqn.6.  
 

Precautions 

 The glass plate G1 should be 45 with the light (horizontal) from the sodium lamp. 

 The glass plate G1 should be oriented such that the light from the sodium lamp incident at 

the inner side of it. This helps the incident light to reflect towards the Newton’s rings 

arrangement.  

 Focus the microscope to see the interference bands clearly. The objective lens of the 

microscope must be at a certain distance from the air wedge. This can be achieved by 

adjusting the main clamping screw and the rack and pinion arrangement of the 

microscope. 

 In order to avoid the backlash error of the travelling microscope, initially the tangential 

screw of the microscope is rotated in a direction and the cross wire is moved from back 

of the 20
th

 ring (say, from 25
th

 ring) and is then made to coincide with the 20
th

 ring. The 

tangential screw should not be rotated in the opposite direction (or to and fro) while 

coinciding with the 20
th

 ring on one side and throughout the experiment. By mistake, if 

you have moved the microscope in the opposite direction while taking the reading 

abandon all the readings taken and do the experiment from the beginning itself. 

 Before starting to take readings ensure that we can move the microscope from the 25
th

 

ring on one side to more than 20
th

 ring on the other side. If it is not so loose the main 

screw of the vernier and loosen or tighten sufficiently the tangential screw and then 

tighten the main screw. 

 

Observation and tabulation 

 Value of one main scale division (1 m s d) =  ………. cm 

 Number of divisions on the vernier       n =  ………. 

 Least count   =    
1 m s d

n
 =  ……… 

 

 

d 

f 

Object and side by side image 

Plane mirror with its frame 

Fig.e 
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Determination of diameter D of the rings 

     Selected ‘k’  =  10 

Number 

of the 

ring 

‘n’ 

Microscope readings  

Diameter 

D = ab 

cm 

 

 

D
2
 

cm
2 

 

 
2 2

n+10 nD D

cm
2
 

Left Right 

M S R 

cm 

V S R Total 

‘a’ cm 

M S R 

cm 

V S R Total  

‘b’ cm 

20          

18          

16          

14          

12          

10          

8          

6          

4          

2          

 

 

 Distance of the lens form the object when side by side image is formed with dark screen 

behind the lens,        d =  ……… cm  

  

 Distance of the lens form the object when side by side image is formed with plane mirror 

behind the lens,        f =  ……… cm  

 

 Radius of curvature of the lens,     R =  
fd

f d
  =  …….. m      

 Wavelength of sodium light         =   
2 2

n+k nD D

4kR


 =  ………..    

      =  ……….. nm 

Result   

  Wavelength of sodium light         =  ……….. nm 

 

Standard data* 

     Wavelength of sodium light         =  589.3 nm 
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Exp.No.2.9 

Laser-Slit width from diffraction pattern 

Aim: To find the width of a narrow slit by producing single slit diffraction pattern by laser 

source.  

Apparatus: A laser source, single slit, a screen with a graph paper pasted on it, scale etc. 

Theory: Parallel beam of light from a laser source is passed through a slit of width AB = b. Let 

XY be a screen at a distance D 

from the slit. The diffraction 

pattern of a single slit consists of a 

number of bright and dark spots as 

shown in fig.b. The theory of 

Fraunhofer diffraction by a single 

slit (since the theory is too long we 

avoid it here) shows that the 

condition for minimum intensity 

(or directions of minimum 

intensity) is  
 
           b sinn =    n, where, n = 1, 2, 3…… (1) 

[The spread of the central diffraction maximum is 

between the first minima on either side of the central 

maximum (refer fig.b)]. By eqn.1, 

  Slit width,  b = 
n

nλ

sin θ
, where, n = 1, 2, 3, …. 

Let x1, x2, x3, …… are the distances of the dark 

spots from the centre of the central maximum. 

(Refer fig.c and fig.e). Then, 
  

  nsinθ  =  nx

D
     

Thus,        b = 
n

nλD

x
  =  

n

λD

x

n

 
 
 

   (2) 

Since  and D are constants nx

n
 is a constant. Thus 

xn-n graph will be a straight line as shown in fig.d. The slope 

of the graph gives the mean value of nx

n
.  Thus, 

        b =  
n

λD

slope of x - n graph
 (3) 

S 

L1 

L2 

X 

D 

P 

C 

A 

B 

O 

 

 
M 

 

N 

Fig.a: Diffraction by a single slit Y 

Fig.b: Single slit diffraction 

pattern corresponding to a slit of 

width of the order of 0.176mm 

x2 

y2 

D 

Slit 

Screen 

x1 
y1 

Fig.c 

n 

xn 

Fig.d 
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 The directions of the secondary maxima (condition for secondary maxima) approximately 

are given by, 

            b sinn =   
λ

± 2n+1
2

     where, n = 1, 2, 3, …..    (4) 

Let y1, y2, y3, …… are the distances of the centres of the secondary maxima (bright spots) 

from the centre of the central maximum. (Refer fig.c and fig.e).  

Then, 

  nsinθ  =  ny

D
 

Thus,       b =   
 

n

2n+1 λD

2y
 =  

n

λD

y
2

2n+1

 
 
 

   (5) 

Since  and D are constants, ny

2n+1
 is a constant. Thus the graph 

between yn and 2n+1 is a straight line. Its slope gives average ny

2n+1
. Then,  

        b =  
n

λD

Twice the slope of y -(2n+1) graph
 (6) 

Procedure: The slit is mounted on the stand. Its width is made narrow. The laser beam is 

allowed to pass through the slit. Ensure that the slit is at the middle of the laser beam. A screen 

fixed with a graph paper is arranged at a large distance ‘D’. The plane of the screen must be 

parallel to the plane of the slit. Adjust the width of the slit and its orientation to get well defined 

diffraction pattern consisting of a number of dark and bright spots on the screen. Since the length 

of the slit is large the diffraction effect (the dark and bright spots in the pattern) occurs only in 

the direction of the width of the slit. Using a pencil draw the outline of all bright spots on the 

graph paper and mark the centre of the spots. Also mark the midpoint of the dark region in 

between the bright spots. Measure the distance D 

between the slit and the screen. Determine the distances 

xn from the centre of central bright spot to the midpoint 

of the dark regions in between the bright spots and draw a 

graph between xn and n. Find out the slope of the graph 

and calculate the slit width ‘b’ by eqn.3. Also determine 

the distances yn from the centre of the central bright spot 

to the centres of the other bright spots and draw a graph 

between yn and 2n+1. Find out the slope and calculate ‘b’ 

by the eqn.6. The experiment may be repeated for 

different D. Similarly we can find out other slit widths.   
 

 The diffraction pattern will be well defined only when the slit width is small.  

 Proper orientation of the slit is necessary. The slit must be adjusted so that it is at the 

middle of the laser beam. 

 D must be sufficiently large. 

 For accurate measurement of xn and yn travelling microscope may be used. 

 

2n+1 

yn 

Fig.d 

x2 

x3 

x4 

y2 

x1 

y3 

y4 

y1 

Fig.e 
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Observation and tabulation 
Observation with dark spots 

Distance of the 

screen from slit D 

cm 

Order of dark 

spots ‘n’ 

Distance of the dark 

spots from the centre xn 

mm 

Slope = nx

n
 

m 

Slit width 

λD
b

slope
  m 

 1    

2    

3    

4    

5    

 1    

2    

3    

4    

5    

 1    

2    

3    

4    

5    

Observation with bright spots 

Distance of the 

screen from slit D 

cm 

Order of bright 

spots ‘n’ 

Distance of the bright 

spots from the centre xn 

mm 

Slope = ny

2n+1
 

m 

Slit width 

λD
b

2 slope



 m 

 1    

2    

3    

4    

5    

 1    

2    

3    

4    

5    

 1    

2    

3    

4    

5    

Mean  
 

Result 
 Width of the slit     b =  …………. m 

Standard data*: Wavelength of laser light (Ruby-solid state),    =  628 nm  
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Theory of potentiometer 
  

Let a steady current I be passed through the 

wire AB with the help of a cell of e m f E.  Let 

ρ be the resistance per unit length of the 

potentiometer wire and J is a sliding contact. 

Let AB = L and AJ = l. Then, 
 
 Potential difference across AB =  ILρ 

Potential difference across AJ  =  Ilρ 

        
PD across AB

PD across AJ
 = 

ILρ

I ρl
 =  

L

l
       (1) 

         PD across AJ =  
PD across AB

L
l

 
 
 

  =  PD per unit lengthlength of the wire (2) 

Thus, when a steady current is flowing through the potentiometer wire AB, the PD across 

any length of the wire is proportional to the length of the wire.  
 
If a DC voltmeter is connected between A and the variable point J it can be seen that the 

voltmeter registers greater values as the contact maker J moves from A to B. 
 
If another cell of e m f equal to PD across AJ is connected between A and J as shown in the 

figure, no current will flow in the secondary circuit and the galvanometer will show no 

deflection.   

Exp.No.2.10 

Potentiometer- Calibration of ammeter 

Aim: To calibrate the given ammeter using a potentiometer. 

Apparatus: A potentiometer, the given ammeter, rheostats, two accumulators (or power 

sources), a Daniel cell (or a power source of standard voltage), a standard resistance, six terminal 

key or a three terminal key, etc. 

Theory  
 
   

 

 

 

 

 

 

 

 

 

 

 

 

A B 

G 

J 

E 

E 

HR 

A 
+ 

 

Rh1 

Rh2 

R 

1 

2 
3 

K1 

K2 

Fig.b: Three terminal key is used 

A B 

G 

J 
E 

E 

HR 

A 
+ 

 

Rh1 

Rh2 

R 

1 
2 
3 

K1 

K2 
Fig.a: Six terminal key is used 
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Let L be the balancing length when a cell of standard e m f E (for Daniel cell E = 1.08 V) is 

connected in the secondary circuit. Then by the theory of potentiometer, 
 
           E   L         (1) 

The potential difference developed across the standard resistance when a current I flows 

through it is, 

          V =  IR          (2) 

Let l be the balancing length when the potential difference across R is applied to the 

potentiometer. Then, 
 
          V   l      

       IR   l     (3) 

Dividing eqn.3 by eqn.1, we get, 

     
IR

E
 =   

L

l
 

          I =  
E

LR
l  (4) 

If E = 1.08 volt,       

         I =  
1.08

LR

l
 (4a) 

Correction to the ammeter reading =   I  I0   =  
E

LR
l    I0    (5) 

The graph between the measured current I0 in the X axis and the correction 0I I  in the Y axis is 

called the calibration graph. A model of it is shown in the fig.c.  
 

Procedure: The connections are made as shown in the fig.a or b. A steady current is allowed to 

flow through the wire AB by connecting the terminals of it to the cell of e m f E through the 

rheostat Rh1 and key K1. E is a standard cell (may be a Daniel cell). The ammeter to be 

calibrated is connected in the secondary circuit in series with the battery, key K2, rheostat Rh2 

and a standard resistance R (1 or 2 ohms). 

Now connect terminals 1 and 2 in fig.b (for fig.a insert keys in between 1 and 2 and 5 and 

6). Adjust the sliding contact J till the galvanometer shows zero deflection and the balancing 

length L corresponding to e m f E is measured from the end A. Next disconnect 1 and 2 and 

connect terminals 2 and 3 (for fig.a unplug the keys in between 1 and 2 and 5 and 6 and insert in 

between 2 and 3 and 4 and 5) . Adjust the rheostat Rh2 so that the ammeter reads a value I0, say 

0.1 A. Let I be the actual current flowing through the circuit. This current produces a potential 

difference IR across the resistance R. Again adjust the contact maker and find the balancing 

length l corresponding to this potential difference. Next the rheostat Rh2 is adjusted successively 

for currents 0.2A, 0.3A, 0.4A,………., 1A and the corresponding balancing lengths are 

determined in each case. The current I and 0I I  are calculated. Then the calibration graph is 

plotted with ammeter reading I0 in the X axis and the correction 0I I  in the Y axis. The 

different points obtained are joined by straight lines.  

0I

Fig.c 
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Precautions 

 Clean the ends of the wires before the connecting. 

 Ensure that the wires are not broken.  

 In all the electricity experiments, it is advised to do the series connections first and then 

the parallel connections. 

 If there is no deflection, check the voltages of the cells or power supplies used and also 

check the continuity of the circuit with a multimeter. 

 Ensure that the secondary voltage applied to the potentiometer (in this case P D across 

the standard resistance R) should not exceed the P D across A B of the potentiometer 

wire. If the balancing length for 1.08 volt is about 920 cm and the standard resistance 

used is 1  the current greater than 1A is not suitable. 

 Ensure that all the positive potential sides are connected to the terminals 4, 5 and 6 and 

negative sides are connected to the terminals 1, 2 and 3. 

 You can check the circuit by a method as follows. Unplug the key K1 in the primary 

circuit. By inserting keys in the secondary circuit and the six terminal keys apply the 

secondary voltage to the potentiometer. Press the sliding contact J at the ends A and B. 

Make sure that the deflections in the galvanometer are in the same direction. If there is no 

deflection check the voltage and continuity of secondary circuit. Now insert the key K1 in 

the primary circuit and check the deflections at A and B. If the deflections are in the 

opposite directions connections are correct. Otherwise, check the voltage and continuity 

of the primary circuit. This checking for opposite deflections must be done separately 

with standard voltage and P D across R. 

 Ensure that the key of the high resistance is to be inserted during the determination of 

final balance point. 

 Keep the potential difference in the primary circuit (p d across AB) undisturbed 

throughout the experiment. 

Observation and tabulation 

  Standard resistance R =  ………… 

  Standard voltage     E =  …………volts 

 Balancing length for standard e m f E  =  L =  ……… cm 

Ammeter 

reading 

I0 A 

Balancing length 

for PD across R 

l cm 

Calculated current 

E
I

LR
l  ampere 

Correction   0I I  

ampere 

0.1    

0.2    

0.3    

0.4    

0.5    

0.6    

0.7    

0.8    

0.9    

1    

Result 
 The given ammeter is calibrated and the calibration graph is drawn. 
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Exp.No.2.11 

Potentiometer-Reduction factor of TG 

Aim: To determine the reduction factor of a tangent galvanometer and hence to find out the 

horizontal component of earth’s magnetic field. 

Apparatus: A potentiometer, tangent galvanometer, rheostats, two accumulators (or power 

sources), a Daniel cell (or a power source of standard voltage), a standard resistance, six terminal 

key or a three terminal key, etc. 

Theory 

A tangent galvanometer consists of a circular coil of radius ‘a’ and a compass box placed at 

the centre of the coil. The magnetic field produced at the centre of the coil when a current I flows 

through the coil is, 

          B =  0μ nI

2a
    (1) 

If the plane of the coil is set along the north-south direction, the magnetic field will be in 

the east-west direction. Hence the resultant magnetic field at the centre of the coil makes an 

angle  with the direction of earth’s magnetic field and the magnetic needle in the compass box 

will be aligned itself in the direction of the resultant field. Then,  
 

         
h

B

B
 =  tan 

Or,         B =  Bh tan    (2) 

i.e.     0μ nI

2a
 =  Bh tan  

         I =  h

0

2aB
tanθ

μ n

 
 
 

 = K tan (3) 

where, h

0

2aB
K

μ n
  is called the reduction factor of the T G.      (4) 
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Let L be the balancing length when a cell of standard e m f E (for Daniel cell E = 1.08 V) is 

connected in the secondary circuit. Then by the theory of potentiometer, 
 
           E   L         (5) 

The potential difference developed across the standard resistance when a current I flows 

through it is, 

          V =  IR          (6) 

Let l be the balancing length when the potential difference across R is applied to the 

potentiometer. Then, 
 
                   V   l      

        IR   l            (7) 

Dividing eqn.7 by eqn.5, we get, 

      
IR

E
 =   

L

l
 

           I =  
E

LR
l         (8) 

Using eqn.3,   K tan =  
E

LR
l         

         K =  
E

LR tanθ

l
        (9) 

 If E = 1.08 volt,    K =  
1.08

LR tanθ

l
        (9a) 

By eqn.4,       Bh =  0μ nK

2a
        (10) 

Procedure: The connections are made as shown in the fig.a or b. Before inserting the different 

keys do the initial adjustments of the TG. To set the TG in the magnetic meridian, rotate the 

compass box alone till the 90-90 mark line coincides with the vertical plane of the coil. Then the 

TG as a whole is rotated till the aluminum pointer reads 0-0. For leveling, if necessary, rotate the 

leveling screws provided at the base.   

To standardize the potentiometer for a particular p d per unit length, connect the standard 

cell (Daniel cell or power source) to the potentiometer by inserting keys in the gap between 1 

and 2 and 5 and 6. Also close key K1.  Keep the sliding contact J at some point, say 920 cm, and 

adjust rheostat Rh1 for no deflection in the galvanometer. Then close the high resistance key and 

the exact balancing length L for the standard cell is determined.  

Then unplug the keys in between 1 & 2 and 5 & 6 and close keys in between 2 & 3 and 4 & 

5. Also close key K2. Now the p d across R is applied to the potentiometer. The rheostat Rh2 is 

adjusted for a suitable deflection in between 30 and 60. The readings at the ends of the 

aluminum pointer are noted. Find the balancing length l. Repeat the experiment by interchanging 

the commutator keys. Repeat the experiment for different deflections and in each case the 

deflection and the corresponding balancing length are determined.  

Using a piece of twine the circumference of the T G coil is determined and from which its 

radius is calculated. Finally, K and Bh are calculated using eqns.9 and 10.  
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Precautions 

 Precautions given in exp.No.10 are applicable in this case also.  

 Ensure that the 90-90 line is at the centre of the coil and parallel to plane of the coil. 

Place a small plastic scale close to the coil with its plane parallel to the coil plane and 

look through the gap in between the coil and the scale. While looking lean a little forward 

and close one of the eyes. 

 Avoid the parallax error during measurement. For that set the TG at a convenient place.  

 Keep TG away from galvanometer, ammeter, rheostat etc., since the magnetic fields due 

to them may affect the reading.  

 Ensure that the current through the TG is such that the deflection in the TG is in between 

30 and 60.  

 Before taking reading tap on the frame of TG. 

 Checking for opposite deflection must be done for each current through R. This is to 

ensure that the p d across R is less than p d between A and B due to primary voltage. 

 If an ammeter is connected in series with the T G circuit you can check whether there is 

any change in the current during the determination of balancing point and also after the 

interchange of commutator keys.  
 

Observation and tabulation 

 Standard resistance,         R =  ………  

 Standard voltage,         E =  ……… volt 

 Balancing length for standard voltage,     L =  …….. cm 

 

 

Sl.No 

Reading against the pointer of 

the T G in degrees 

Mean 

 
Degree 

Balancing length in cm  

K 

ampere Commutator 

position 1 

Commutator 

position 2 

Position 

1 

Position 

2 

Mean 

l cm 

1 2 3 4     

          

          

          

          

          

Mean K  
 
 Number of turns of the coil       n =  …….. 

  Circumference of the T G coil      C =  ………. cm 

 Radius of the coil,   a =  
C

2π
 =  ……… m  

  Horizontal component of earth’s magnetic field Bh =  0μ nK

2a
  =  ……… tesla 

Result 
 Reduction factor of T G,   K = ………. ampere    

 Horizontal component of earth’s magnetic field Bh =  ……… tesla 

Standard data*: Horizontal component of earth’s magnetic field     Bh =  
40.38 10 tesla  
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Exp.No.2.12 

Potentiometer-Calibration of high range voltmeter 

Aim: To calibrate the given high range voltmeter using a potentiometer. 

Apparatus: A potentiometer, the given high range voltmeter, rheostats, two accumulators (or 

power sources), a Daniel cell (or a power source of standard voltage), two resistance boxes, six 

terminal key or a three terminal key, etc. 

Theory  

 
Let L be the balancing length when a cell of standard e m f E (for Daniel cell E = 1.08 V) is 

connected in the secondary circuit. Then by the theory of potentiometer, 
 
             E   L       (1) 

Let V be the actual potential difference across P and Q. Then the current I through P and Q is 

given by, 

              I =   
V

P+Q
 

Potential difference across P,       V1 =   IP =  
VP

P+Q
      (2) 

If l is the balancing length for the p d developed across the resistance P, we can write, 

           V1   l    

i.e.                
VP

P+Q
   l          (3) 

Dividing eqn.3 by eqn.1,   
 

VP

P+Q E
 =   

L

l
   

A B 

G 

J 
E 

E 

HR 

Rh1 

1 
2 
3 

K1 

Fig.a: Six terminal key is used 
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Fig.b: Three terminal key is used 
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         V =  
E P+Q

L P
l

 
 
 

        (4) 

     =  
1.08 P+Q

L P
l

 
 
 

       (4a) 

  Voltmeter correction =  V  V0  

     = 
E

L

P+Q

P

 
 
 

l  V0      (5) 

The graph plotted between the correction 

V  V0 in the Y axis and V0 in the X axis 

is the calibration graph of the given 

voltmeter. A model of the graph is 

shown in the fig.c. 
 

Procedure: Connections are made as 

shown in fig.a or fig.b. A two volt 

accumulator or a power supply E is 

connected in between A and B. The 

secondary circuit consists of a standard 

voltage power source and a high voltage 

power supply. In addition to the rheostat 

Rh2, resistances P and Q also act as a potential divider arrangement. Take suitable resistances in 

P and Q, say 50 ohm in P and 450 ohm in Q (or, 100 ohm in P and 900 ohm in Q), such that the 

potential difference developed across P does not exceed the p d across A B.  

 

The key K1 is closed and check for opposite deflections with the standard voltage and the 

voltage across P. By inserting suitable keys, the standard voltage source is applied to the 

potentiometer and the balancing length L is determined. Then, take suitable resistances in P and 

Q. The keys in the six terminal key or three terminal key are changed such that the standard 

voltage is removed from the potentiometer circuit and the p d across P is applied to the 

potentiometer. The voltmeter reading is adjusted to, say 1 volt by adjusting the rheostat Rh2. The 

balancing length l is determined. Then the rheostat Rh2 is adjusted for voltmeter reading 2V, 3V, 

………. etc. and in each case the balancing length is determined.  

 

The voltages and corrections are calculated using eqns. 4 and 5. A calibration graph is 

plotted with the voltmeter readings V0 in the X axis and the correction VV0 in the Y axis.    
 

Precautions:   

 Same as given in exp.No.10. 

 Be careful that the voltage across P is less that the primary voltage across AB. That is, 

resistance P << Q. 

 Tight all the plugged keys in all resistance boxes, since the loose keys create unwanted 

resistance in the circuit. 

V0 

VV0 

Fig.c 
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Observations and tabulations 

 Standard voltage     E =  …………volts 

 Balancing length for standard e m f E  =  L =  ……… cm 

Sl.

No. 

Voltmeter 

Reading V0 

volt 

Resistance in ohm Balancing 

length l 

cm 

Calculated voltage  

E P+Q
V

L P
l

 
  

 
 

volt 

Correction 

VV0 

volt 

 

P 

 

Q 

1       

2       

3       

4       

5       

6       

7       

8       

9       

10       

 

Result 
 The given high range voltmeter is calibrated and the calibration graph is drawn. 

 

Standard data*: Voltage of Daniel cell = 1.08 volt. 
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Exp.No.2.13 

Circular coil- Determination of Bh and m 

Aim: To determine the 

value of the horizontal 

component of earth’s 

magnetic field and the 

dipole moment of a bar 

magnet using a circular coil. 

Apparatus: Circular coil 

apparatus (fig.a), power 

supply, compass box, bar 

magnet, ammeter, rheostat, 

commutator key and another 

key.  

Theory: The magnetic 

field at a point on the axis at 

a distance ‘x’ from the centre of a current carrying circular coil of ‘n’ turns is given by, 
 

          B =  

 

2

0

3
2 2 2

μ na I

2 a x

       (1) 

where, ‘a’ is the radius of the coil and ‘I’ is the current through it. Since, while doing the 

experiment the axis of the coil is set perpendicular to the magnetic meridian, the field due to the 

coil and the earth’s horizontal field (directed from geographic south to geographic north) are 

mutually perpendicular, the resultant field is at an angle  with the magnetic meridian. Then 

applying the tangent law, we get, 
 
          B =  Bh tan        (2) 

From eqns.1 and 2,   Bh tan =   

 

2

0

3
2 2 2

μ na I

2 a x

    

         Bh =  

 

2

0

3
2 2 2

μ na I

2 a x tanθ

       (3) 

If a magnet of half the length ‘l’ and dipole moment ‘m’ is placed at a distance ‘d’ from the 

centre of the compass box such that the field due to the coil is exactly cancelled by the field due 

to the magnet, we can write, 

    

 

2

0

3
2 2 2

μ na I

2 a x

  =  

 
0

2
2 2

μ 2md

4π d l
   

         m =  
 

 

2
2 2 2

3
2 2 2

πna I d

d a x

l



        (4) 

d x 

North 

N S 

Fig.a 

South 

West East 
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Procedure: Connections are made as shown in the fig.b. Usually the coil consists of a set of 

coils of different number of turns. Select any one of them, say 5 turns. The initial adjustments to 

set the plane of the coil parallel to the magnetic meridian are made as follows. The compass box 

is placed at the centre of the coil. Rotate the 

compass box alone till the 90-90 mark line 

coincides with the vertical plane of the coil. Then 

the apparatus as a whole is rotated till the 

aluminum pointer reads 0-0. Now the plane of the 

coil is in the magnetic meridian and the platform 

is in the east-west direction as shown in the fig.a.  

To find B0: Now the compass box is kept at a 

distance ‘x’ from the centre of the coil, (say, 5 

cm) on one side. The circuit is closed and the 

rheostat is adjusted for a current ‘I’. The current 

is such that the deflection in the compass box is 

in between 30 and 60. The ammeter reading 

and the readings corresponding to both ends of the pointer are noted. Then the current is reversed 

by changing the commutator keys and the pointer readings are again taken.  Now the compass 

box is placed at the same distance on the other side of the coil and four more readings are taken. 

The average of these eight deflections is calculated. Let it be . The circumference of the coil is 

determined with a twine and from it the radius ‘a’ of the coil is calculated. Bh is calculated using 

eqn.3. The experiment is repeated for different values of distance x and current I. The average 

value of Bh is determined.  

To find m: After making connections and the initial adjustments of the apparatus as discussed 

above, the compass box is placed at distance ‘x’ from the centre of the coil. The current is 

adjusted to get a deflection in between 30 and 60. The given magnet is placed along the axis on 

one side of the compass box as shown in fig.a. The distance between the magnet and the 

compass box is adjusted so that the deflection in the compass box is reduced to zero. The current 

through the coil and the distance d1 between the magnet and the compass box are measured. The 

current is reversed by changing the commutator keys. The magnet also must be reversed. The 

distance is adjusted for null deflection. The distance d2 from the centre of the magnet and the 

centre of the compass box is again measured. Now the compass box and the magnet are placed 

on the other side of the coil and two more readings, d3 and d4, for null deflection are determined. 

The average distance ‘d’ of four distances is found.  

The number of turns of the coil is noted. The radius of the coil ‘a’ is determined by 

measuring its circumference. The length of the magnet ‘2l’ is also measured. Then using eqn.4 

the dipole moment ‘m’ is calculated. The experiment is repeated for different values of distance 

x and current I. The average value of m is determined.    

Precautions 

 Ensure that the plane of the coil is set parallel to the magnetic meridian. 

 The axis of the bar magnet should pass through the centre of the compass needle and the 

centre of the circular coil. 

 The distances and the currents are such that the deflection is in between 30 and 60. 

 To get zero deflection with magnet, the field due to the coil and the field due to the 

magnet are in the opposite directions. If you are not getting a zero deflection reverse the 

magnet for changing the direction of field due to the magnet.  

Rh K 
A +  

Fig.b 
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Observation and tabulation 
To find Bh 

 

Sl.No 

Current 

I 

ampere 

Distance 

‘x’ 

cm 

Deflections ‘’ in degree Mean 

 
degree 

Bh 

tesla One side Other side 

1 2 3 4 5 6 7 8 

1             

2             

3             

4             

5             

6             

                Mean Bh = ……….. T 

 Number of turns of the coil,        ‘n’ =  ………. 

 Circumference of the coil      ‘L’ =  ………. cm 

 Radius of the coil,        ‘a’ =  
L

2π
 =  ……… m 

To find m 

 

Sl.No 

Current 

I 

ampere 

Distance 

‘x’ 

cm 

Distance of magnet for null deflection Mean 

d 

cm 

moment

m 

Am
2 

d1 

cm 

d2 

cm 

d3 

cm 

d4 

cm 

1         

2         

3         

4         

                Mean m = ……….. Am
2 

 

Result 

 Horizontal component of earth’s magnetic field,  Bh =  ……….. tesla 

 Dipole moment of the given bar magnet,        m =  ……….. ampere metre
2
  

Standard data* 

  Permeability of the free space,     0  =  
74π 10  henry/metre   
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Exp.No.2.14 

Carey Fosters’ Bridge-Temperature coefficient of resistance 

Aim: To determine the temperature coefficient of the resistance of the material of the coil by 

measuring its resistance at different temperatures using Carey Foster’s bridge. 

Apparatus: Carey Foster’s bridge, given coil of wire, a cell (power supply), standard 

resistances, a resistance box, key, galvanometer, high resistance, heating arrangement and a 

thermometer.  

Theory: The temperature coefficient of resistance is defined by the change in resistance to its 

resistance at zero degree Celsius per unit resistance per unit degree rise of temperature.  
 

 Temperature coefficient of resistance        =  t 0

0

X X

X t


    (1) 

      Xt =   0X 1 αt  

Let X1 and X2 be the resistances at temperatures t1C and t2C respectively. Then, 

      X1 =  0 1X 1 αt   (2) 

      X2 =  0 2X 1 αt   (3) 

Dividing eqn.2 by eqn.3, 

     1

2

X

X
 =  

 

 
1

2

1 αt

1 αt




 

Cross multiplying and rearranging, 

         =  2 1

1 2 2 1

X X

X t X t




  (4) 

In this experiment we use 

Carey Foster Bridge to 

determine the unknown 

resistance X1 and X2. The basic 

principle of it is Wheatstone’s 

principle. Carey Foster Bridge 

consists of a uniform wire AB 

of length 1 m stretched on a 

wooden board. Five metallic 

strips are fixed on the wooden 

board as shown the figure. G1, 

G2, G3 and G4 are gaps between 

the metal strips. Two equal 

resistances P and Q are 

connected in the gaps G2 and G3 respectively. The unknown resistance X is connected in the gap 

G1. A standard resistance R is connected in the gap G4. A standard cell is connected across the 

terminals C and F. A galvanometer G is connected between D and the contact maker J, that is 

able to slide along AB.  

A B l1 100l1 

G 

R X P Q 

G1 G2 G3 G4 

J 

C 

D 

F 

E K 

Fig.a 

X 

 

ρl1 

P Q 

R 

 

ρ(100l1) 

D 

J 

C F G 

Fig.b 

R 

 

ρl2 

P Q 

X 

 

ρ(100l2) 

D 

J 

C F G 

Fig.c 
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Theory*: The contact maker J is moved along the wire AB until the galvanometer shows no 

deflection. Then the bridge is said to be balanced. Let l1 be the balancing length as measured 

from the end A. Let  and , respectively, be the end resistances at A and B. Let ρ be the 

resistance per unit length of the wire AB. The above bridge is equivalent to a Wheatstone’s 

bridge as shown fig.b.  
 
Applying Wheatstone’s principle we get, 
 

    
P

Q
 =   

 
1

1

X+α+ρ

R+β+ρ 100

l

l
        (5) 

 
The resistances R and X are interchanged and the bridge is again balanced. The balancing 

length l2 is measured from the same end A. Then, 
 

    
P

Q
 =    

 
2

2

R+α+ρ

X+β+ρ 100

l

l
        (6) 

Equating the RHS of eqns.5 and 6 we get, 

      
 

1

1

X+α+ρ

R+β+ρ 100

l

l
 =    

 
2

2

R+α+ρ

X+β+ρ 100

l

l
 

Adding 1 on both sides, we get, 

        
 

1

1

X+α+ρ

R+β+ρ 100

l

l
  + 1 =      

 
2

2

R+α+ρ

X+β+ρ 100

l

l
  +  1 

  
 

 
1 1

1

X+α+ρ +R+β+ρ 100

R+β+ρ 100

l l

l




  =     

 

 
2 2

2

R+α+ρ X+β+ρ 100

X+β+ρ 100

l l

l

 


 

Since the numerators are equal, we can equate the denominators. Thus we get, 

          1R+β+ρ 100 l  =   2X+β+ρ 100 l  

i.e.            X  ρl2 =   R  ρl1 

i.e.                X =   R + ρ(l2l1)       (7) 

To find ρ: A thick copper strip is connected in the gap G1 and a small resistance R of the order 

of 0.1  is connected in the gap G4 and the balancing length l3 is determined. Now the copper 

strip and R are interchanged and the balancing length l4 is determined. Then from eqn.7, since X 

= 0 and R = R in this case, we get, 
 
       0 =     R + ρ(l4l3) 

i.e.      ρ =    
3 4

R

l l




        (8) 

Thus, by knowing R and ρ the unknown resistance X can be calculated using eqn.7. 
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Procedure 

To find   

The connections are 

made as shown in the 

fig.d. Suitable standard 

resistances P and Q are 

connected in the gaps G2 

and G3. Instead of X 

connect a thick copper 

strip in the gap G1 and a resistance box with fractional resistance in the gap G4. Take a resistance 

R = 0.2  in the box. Find the balancing length l3. It is measured from the end A. Then 

interchange the copper strip and the resistance box. The balancing length l4 is determined. It is 

again measured from the end A. Calculate ‘’ using eqn.8. The experiment is repeated for R = 

0.3 , 0.4 , ……….. The average of ‘’ is calculated.  

 

To find the resistance of the coil 

Connections are made as shown in fig.d. The resistance coil is connected in the gap G1 and 

a resistance box in the gap G4. The coil is immersed in water taken in a vessel. The temperature 

t1C of the water bath is noted with a thermometer. Introduce a suitable resistance R in the box 

(read precautions) and the balancing length l1 is determined. It is measured from the end A. Then 

interchange the coil and the resistance box and the balancing length l2 is determined. It is again 

measured from the end A. Repeat the experiment for different values of R.  

The water bath is then heated to the temperature t2C (= 100 C if water boils). The new 

resistance is determined as discussed above.  

The resistances X1 and X2 are calculated by eqn.7 and the temperature coefficient of 

resistance by eqn.4.  
 

Precautions 

 Ensure that the resistances X and R are not far different. If they are equal you will get the 

balance point at the middle of the wire AB. To find approximately equal resistance, the 

contact maker J is kept pressed at the middle of AB and find the resistance needed in R 

for no deflection in the galvanometer. Then take three readings with R less than and 

three more readings with R greater than this resistance. Increase or decrease the 

resistance in steps by 0.5 ohm (or 0.3 ). 

 When copper strip is used, instead of X, take only the fractional resistance 0.2, 0.3, 0.4, 

…… Since  is the resistance per unit length sign of l3  l4 is not considered. 

 The sign of l2  l1 is very important. Take positive as positive negative as negative. 

 If you are not getting any deflection check the supply voltage and continuity of the 

circuit with a multimeter. 

 Remember the balancing length is always measured from the end A.   

 Tight all the plugged keys in all resistance boxes, since the loose keys create unwanted 

resistance in the circuit. 

 

A B l1 100l1 

G 

R X P Q 

G1 G2 G3 G4 

J 

C 

D 

F 

E K 

Fig.d 
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Observation and tabulation 

To find  

Sl.No. Resistance R 

Ohms 

Balancing length with R in l3  l4 

cm 
3 4

R
ρ

l l





 

Right gap 

l3 (cm) 

Left gap 

l4 (cm) 

1      

2      

3      

4      

5      

          Mean   =   …………   

 

To find X1 and X2 

 

Temperature 

Sl.No. Resistance 

R 

ohms 

Balancing length with 

R in 

 

l2  l1 

cm 

 

 2 1X R ρ l l  

ohm 
Right gap 

l1 (cm) 

Left gap 

l2 (cm) 

 

 

t1 = …….C 

1      

2      

3      

4      

5      

 Mean X1  

 

 

t2 = …….C 

1      

2      

3      

4      

5      

 Mean X2  

 

             =  2 1

1 2 2 1

X X

X t X t




 =  ………  =  ………. Per C    

Result 

 Temperature coefficient of resistance of the material of the coil,  =  ………per C 

Standard data*  

  Temperature coefficient of resistance of copper,    = 0.00400.0002 per celsius 

 The accepted value is 0.0039 per celsius. 
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Exp.No.2.15 

Conversion of a Galvanometer into voltmeter- calibration using 

potentiometer 

Aim: To convert the given galvanometer into a voltmeter and calibrate it with a potentiometer. 

Apparatus: The given pointer type galvanometer, potentiometer, resistance boxes, 

commutator key, accumulator, Daniel cell (or power supplies), etc.  

Theory: A galvanometer can be converted into a 

voltmeter by connecting a high resistance in series 

with it. The range of the voltmeter (converted 

galvanometer) depends on this series resistance. Let 

the galvanometer is converted to a voltmeter to 

measure a voltage range 0-V. Let Ig be the full scale 

deflection current (current flowing through the 

galvanometer when it shows full scale deflection) of 

the galvanometer. For example, the given 

galvanometer is graduated such that the division at the centre is zero and on each side of the zero 

line there are 30 divisions. Then the full scale deflection current means the current required to 

produce a deflection of 30 divisions in the galvanometer. Suppose this galvanometer is converted 

into a voltmeter of range 0 to V volt. When the converted galvanometer reads a voltage V, the 

current trough it is Ig ampere. Let G be the resistance of 

the galvanometer. Then, from fig.a, 
 

        gI R G  =  V 

        R =  
g

V
G

I
   (1) 

Let ‘k’ be the figure of merit (current sensitivity) of the 

galvanometer. It is the current required to produce a 

deflection of one division. If there are ‘n’ divisions on 

each side of the zero division,  
 
         Ig =  kn   (2) 

To find out k and G we consider a circuit as shown in fig.b. Using Ohm’s law, the current 

through P and Q is (since P << R + G), 

             I =  
E

P+Q


  

Potential difference across P is,    V =  
E P

P+Q


 

Current through the galvanometer, I1 =  
V

R G



 
  =  

  
E P

P+Q R G



 
 

If R = 0,           I1 =  
 

E P

P+Q G


      (3) 

G 

V 

Ig 

I 

R 

V 
Fig.a 

E K 

G 

P Q 

R 

Fig.b 

I 

V 
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Due to this current the galvanometer shows a deflection of ‘d’ divisions. Then current sensitivity, 
 

            k =   1I

d
 =  

 
E P

P+Q Gd


 =  

 
E P

P+Q G d

  
 
 

   (4) 

When a resistance is introduced in R, current I1 decreases and hence the deflection in the 

galvanometer decreases. The current and hence the galvanometer deflection reduces to half when 
 
          R    G + P.       (5) 

(See the appendix at the end). Using eqns.2, 4 and 5 in eqn.1 we get the resistance needed to 

convert a galvanometer to a voltmeter of range 0 to V volt. Its volt per division is V/n. Then 

convert the galvanometer into 

voltmeter and calibrate it. 

Draw the calibration graph as 

shown in the model. 
  

Procedure 
To find G and k: Connections 

are made as shown in the fig.b. 

Suitable resistances are 

introduced in P and Q with P 

<< Q. For example, P = 10  

and Q = 990  so that P + Q = 

1000 . The voltage across P 

(much smaller voltage) is 

applied to the galvanometer through the resistance box R. All the keys in R are plugged and 

tightened so that R = 0. The deflection ‘d’ in the galvanometer is noted. Now increase the 

resistance in R and find out the resistance needed to reduce the deflection to half of its original 

value. This value of resistance is noted. The experiment is repeated after reversing the 

commutator. The entire experiment is repeated for different values of P and Q. In each case ‘d’ 

and ‘G’ are determined.  

To convert galvanometer into voltmeter: Using eqns.2, 4 and 5 in eqn.1calculate the resistance 

R needed for the conversion of galvanometer to the voltmeter for the selected voltage range. For 

example, If there are 30 divisions in the galvanometer we can conveniently choose a range of 0 

to 0.3, 0 to 3 or 0 to 30 volt. Connect the calculated resistance R in series with the galvanometer. 

Thus the galvanometer is converted to a voltmeter. 

A B 

G 

J 

E 

R 

Voltmeter 
+  

Rh1 K1 

Fig.d 

l 
A B 

G 

J 

E 

E 

HR 

Rh1 K1 

Fig.c 

L 

V


V
0

 

V0 
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Calibration of the voltmeter: Depending upon the range of the voltmeter constructed, we can 

follow the method of calibration of low range voltmeter (Exp.No.1.20 of practical-I) or the 

method for high range voltmeter (Exp.No.2.12 of practical-II).  

Here we use another simple method as follows. Standardise the potentiometer with a 

standard voltage using the diagram as shown in fig.c. The balancing length ‘L’ for the standard 

voltage (Daniel cell 1.08 V) is determined. Then the potential difference per unit length of the 

potentiometer wire 
E

L
 is found out. Connect the newly constructed voltmeter as shown in fig.d. 

Move the contact maker J along the wire such that the voltmeter reads a particular value V0, say, 

0.1 volt. Measure the length ‘l’ corresponding to this voltage and calculate the voltage

E 1.08
V

L L

l l
   . Repeat the experiment for 0.2 volt, 0.3 volt, …………. A calibration graph is 

plotted with V0 along the X axis and the correction along the Y axis.   

 To make calculations easy choose P + Q as a multiple of 10 and keep it constant. For 

example If P = 10 and Q = 90, P +Q = 100 or, if P = 10, Q = 990, so that P + Q = 1000. If 

deflection is too large either reduce the voltage E or increase P + Q. Ensure P << Q. Also 

P << R + G. 

 Tight all the plugged keys in all resistance boxes, since the loose keys create unwanted 

resistance in the circuit. 

 It can be shown that the resistance needed for half deflection in the galvanometer is, (see 

the appendix at the end), 

       R  =  
 P Q r

G
P Q r




 
, where ‘r’ is the internal resistance of the cell E.  

       G =  
 P Q r

R
P Q r




 
 

Since, r and P are much less than Q, 

        G   R P   

Observation and tabulation 

To find G, k and R 

   Voltage applied across P and Q  = E =  ……… volt  

           P + Q  =  ………. ohm 

P 

Ohm 

Q 

Ohm 

Galvanometer deflection 

‘d’ 
P

d
 

Resistance for half deflection GRP 

Ohm 
left Right Mean Left  Right  Mean  

          

          

          

          

          

          

Mean  Mean G  
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Current sensitivity (figure of merit) of the galvanometer,  

           k =    
 

E P

P+Q G d

  
 
 

  =  ….… ampere/division 

 Number of divisions (one side of zero division) on the galvanometer,    n = ……… 

  Full scale deflection current,         Ig =   nk =  ………. A 

 Range of voltage selected,     0 to V = 0 to ….. volt 

 Resistance, R =  
g

V
G

I
   = ……. ohm   

To check the correctness of the voltmeter readings 

 Standard voltage          E =  ……. volt 

  Balancing length with standard voltage,    L =  …….. cm 

 Voltage per division of the constructed voltmeter, v =   
V

n
 =  ……volt/division 

Deflection in 

the converted 

galvanometer,  

         ‘d’ 

Measured voltage 

V0 = vd 

Volt 

Length of the 

potentiometer wire 

corresponding to the 

measured voltage, l cm 

Calculated 

voltage =
E

L

l
 

volt 

Error = 
E

L

l
 V0 

Volt 

     

     

     

     

     

     

     

     

     

     

     

 

 

Result 
 The given galvanometer is converted to a voltmeter to read a voltage range 0 to ….. volt. 

Its readings are checked with a potentiometer and a calibration graph is plotted. 

 

Standard data* 

 E m f of the Daniel cell,     E =  1.08 volt 
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Appendix* 

For the closed circuits we can write, 

        E =     1 1 2 1 2I P I I Q I I r      (1) 

    1I P  =   2I R G     (2) 

When R = 0, I1 = 1I  and I2 = Ig, then the equations 

reduce to 

        E =     1 1 g 1 gI P I I Q I I r        (3) 

    1I P  =  gI G      (4) 

       1I  = 
gI

G
P

 

       E =  
g g

g g g

I I
I G G I Q G I r

P P

   
      
   

 (5) 

When R = R, the deflection in the galvanometer is half, i.e. the I2 = 
gI

2
 and I1 = 1I . Then the 

eqns. 1 and 2 become, 

          E =  
g g

1 1 1

I I
I P I Q I r

2 2

   
        

   
 (6) 

      1I P  =   gI
R G

2
    

       1I  =   gI
R G

2P
   

         E =       g g g g gI I I I I
R G R G Q R G r

2 2P 2 2P 2

   
           

   
  (7) 

Equating the R H Ss of eqns.5 and 7, 

g g

g g g

I I
I G G I Q G I r

P P

   
      
   

  =       g g g g gI I I I I
R G R G Q R G r

2 2P 2 2P 2

   
           

   
 

Multiplying throughout by 
g

2P

I
 and rearranging,  

   R P Q r    =     G P Q r P Q r     

       R  =  
 

 

P Q r
G

P Q r




 
 

       G =  
 

 

P Q r
R

P Q r




 
      (8) 

When P and r are much less than Q, 

      G    R P   

If P << R ,      G     R  

E 
r 

G 

P Q 

R 

I 

V 

I2 

I1 

I=I1+I2 

I=I1+I2 
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Exp.No.2.16 

Conversion of Galvanometer into ammeter- calibration using 

potentiometer 
 

Aim: To convert the given galvanometer into an ammeter and calibrate it using a potentiometer. 

Apparatus: The given pointer type galvanometer, potentiometer, resistance boxes, standard 

resistance wire, commutator key, accumulator, Daniel cell (or power supplies), etc.  

Theory: A galvanometer can be converted into an ammeter by connecting a small resistance 

(shunt resistance) in parallel with it. The range of the ammeter (converted galvanometer) 

depends on this parallel resistance. Let the galvanometer is converted to an ammeter to measure 

a current range 0 to I ampere. Let Ig be the full scale deflection current (current flowing through 

the galvanometer when it shows full scale deflection) of the 

galvanometer. Suppose this galvanometer is converted into an 

ammeter of range 0 to I ampere. When the converted galvanometer 

reads a current I ampere, the current trough it is only Ig ampere and 

the remaining current passes through the shunt resistance S. Let G 

be the resistance of the galvanometer. Then from fig.a, 
 

     gI G  =  sI S  =   gI I S  

        S =  
g

g

I G

I I
  (1) 

Let ‘k’ be the figure of merit (current sensitivity) of the 

galvanometer. It is the current required to produce a 

deflection of one division. If there are ‘n’ divisions on 

each side of the zero division,  
 
         Ig =  kn   (2) 

To find out k and G we consider a circuit as shown in fig.b. Using Ohm’s law, the current 

through P and Q is, 

             I =  
E

P+Q


  

Potential difference across P is,    V =  
E P

P+Q


 

Current through the galvanometer, I1 =  
V

R G



 
  =  

  
E P

P+Q R G



 
 

If R = 0,           I1 =  
 

E P

P+Q G


      (3) 

Due to this current the galvanometer shows a deflection of ‘d’ divisions. Then current sensitivity, 

G Ig I 

S 

I 

Fig.a 

Is 

E K 

G 

P Q 

R 

Fig.b 

I 

V 
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            k =   1I

d
 =  

 
E P

P+Q Gd


 =  

 
E P

P+Q G d

  
 
 

   (4) 

When a resistance is introduced in R, current I1 decreases and hence the deflection in the 

galvanometer decreases. The current and hence the galvanometer deflection reduces to half when 
 
             R   G + P       (5) 

Using eqns.2, 4 and 5 in eqn.1 

we get the resistance needed to 

convert a galvanometer into an 

ammeter of range 0 to I 

ampere. Its current per division 

is I/n.  

Let  be the resistance 

per unit length of a standard 

resistance wire. Length of the 

wire needed for a resistance S 

is S/.  

Then convert the 

galvanometer into ammeter 

and calibrate it. Draw the calibration graph as shown in the model. 
 

Procedure 

To find G and k: Connections are made as shown in the fig.b. Suitable resistances are 

introduced in P and Q with P << Q. For example, P = 10  and Q = 990  so that P + Q = 1000 

. The voltage across P (much smaller voltage) is applied to the galvanometer through the 

resistance box R. All the keys in R are plugged and 

tightened so that R = 0. The deflection ‘d’ in the 

galvanometer is noted. Now increase the resistance in 

R and find out the resistance needed to reduce the 

deflection to half of its original value. This value of 

resistance is noted. The experiment is repeated after 

reversing the commutator. The entire experiment is 

repeated for different values of P and Q. In each case 

‘d’ and ‘G’ are determined.  

To convert galvanometer into ammeter: Using 

eqns.2, 4 and 5 in eqn.1, calculate the resistance S 

needed for the conversion of galvanometer to the 

ammeter for the selected current range. For example, 

If there are 30 divisions in the galvanometer we can 

conveniently choose a range of 0 to 0.3, 0 to 3 

ampere. Connect the calculated resistance S in parallel 

with the galvanometer. Thus the galvanometer is 

converted to an ammeter. 

Calibration of the ammeter: To calibrate the ammeter we follow the method described in 

exp.No.2.10. The balancing length L, corresponding to the standard voltage E and the balancing 

I
I 0

 

I0 

A B 

G 

J E 

E 

HR 

+  

Rh1 

Rh2 

R 

1 
2 
3 

K1 

K2 

5 
6 

4 
G 

S I I 

Fig.c 
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length l corresponding to the voltage across the standard resistance R for various currents are 

determined. The current and the error in the measurement of it are calculated as follows. 

              I =  
E

LR
l   

If E = 1.08 volt,       

          I =  
1.08

LR

l
  

Correction to the ammeter reading =   I  I0   =  
E

LR
l    I0   

The calibration graph between the measured current I0 in the X axis and the correction 0I I  in 

the Y axis is plotted.  

Precautions 

 All precautions given in exp.No.15 applicable in this experiment. 

 Take an excess length ( 2 cm) of standard resistance wire required to connect at the two 

terminals of the galvanometer.  
 

Observation and tabulation 

To find G, k and R 

   Voltage applied across P and Q  = E =  ……… volt  

           P + Q  =  ………. ohm 

P 

ohm 

Q 

Ohm 

Galvanometer deflection 

‘d’ 
P

d
 

Resistance for half deflection GRP 

Ohm 
left Right Mean Left  Right  Mean  

          

          

          

          

          

          

Mean  Mean G  

 

Current sensitivity (figure of merit) of the galvanometer,  

           k =    
 

E P

P+Q G d

  
 
 

  =  ….… ampere/division 

 Number of divisions (one side of zero division) on the galvanometer,    n = ……… 

  Full scale deflection current,         Ig =   nk =  ………. A 

 Range of current selected,        0 to I =  0 to ….. ampere 

 Resistance, S = 
g

g

I G

I I
   = ……. ohm   
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 Resistance per unit length of the standard resistance wire,  =  ……. ohm/metre 

 Length of the wire needed for the resistance S is L =  
S

ρ
 metre. 

 (Read the precautions given) 

To check the correctness of the ammeter (converted voltmeter) readings 

 Standard voltage          E =  ……. volt 

  Balancing length with standard voltage,    L =  …….. cm 

 Current per division of the constructed ammeter,   i =   
I

n
 =  ……ampere/division 

Deflection in 

the converted 

galvanometer,  

         ‘d’ 

Measured current 

I0 = id 

ampere 

Length of the 

potentiometer wire 

corresponding to the 

measured current, l cm 

Calculated 

current = 

E

LR

l
 ampere 

Error =
E

RL

l
 I0 

ampere 

     

     

     

     

     

     

     

     

     

     

     

 

Result 
 The given galvanometer is converted to an ammeter to read a current range 0 to ….. A. 

Its readings are checked with a potentiometer and a calibration graph is plotted. 

 

Standard data* 

 E m f of the Daniel cell,     E =  1.08 volt 

 *Resistance per metre of copper wire of 

Gauge number Diameter in mm Resistance per metre /m 

20 0.9144 0.0263 

22 0.7112 0.0434 

24 0.5588 0.0703 

26 0.4572 0.105 

28 0.3759 0.155 

30 0.3150 0.221 
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Exp.No.2.17 

Verification of Thevenin’s and Norton’s theorems 

Aim: To verify the Thevenin’s and Norton’s network theorems. 

Apparatus: Power supply, resistance box or standard resistances, voltmeter, ammeter etc. 

Theory 

Thevenin’s theorem: It states that a 

two terminal network containing 

resistances (linear impedances) and 

voltage sources can be replaced by a 

single voltage source VTh, in series 

with a single resistance RTh, where, 

VTh, called Thevenin voltage, is the 

open circuit voltage between the 

terminals and RTh, called the Thevenin 

resistance, is the resistance that would be measured between 

the terminals with all the voltage sources are replaced by their 

internal resistances.  

Fig.a represents a circuit containing simple linear 

network of three resistances R1, R2 and R3 with two terminals 

C and D. RL is a load resistance connected between the two 

terminals C and D. E is the e m f of the voltage source and r is 

its internal resistance. Fig.b represents the Thevenin 

equivalent.  

Theoretical calculation of Thevenin voltage and Thevenin 

resistance: From fig.a, 
 

            1 L 2 LI R r I R R    =   E       (1) 

           L 2 L L 3I R R I I R    =   0       (2) 

       3IR  =   L 2 3 LI R R R   

          I =   L
2 3 L

3

I
R R R

R
         (3) 

Using eqn.3 in eqn.1, 

      L
2 3 L 1 L 2 L

3

I
R R R R r I R R

R
      =  E 

         IL =  
    

3

2 3 L 1 3 2 L

ER

R R R R r R R R    
    (4) 

         VL =  
    

3 L

2 3 L 1 3 2 L

ER R

R R R R r R R R    
    (5) 

R2 

RL 

r R1 C 

R3 

D 

E 

Fig.a: Network of resistances and a voltage source 

I IL IIL 

VL 

RTh C 

RL 

D 

VTh 

Fig.b: Thevenin equivalent 

IL 

VL 
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Calculation of VTh: Thevenin voltage is 

the open circuit voltage between the 

terminals C D. It is same as the voltage 

across R3 in fig.c.  
 

    Current    I =  
1 3

E

r R R 
 

    VTh =  IR3 =   3

1 3

ER

r R R 
 (6) 

Calculation of RTh: From the fig.d, 

     RTh =  
 1 3

2

1 3

R r R
R

r R R




 
  (7) 

From fig.b, 

                   IL =  Th

Th L

V

R R
  

Using eqns.6 and 7 

   =   
    

3

2 3 L 1 3 2 L

ER

R R R R r R R R    
     (4) 

     VL = ILRL =   
    

3 L

2 3 L 1 3 2 L

ER R

R R R R r R R R    
     (5) 

 Experimental verification: From the Thevenin equivalent circuit given in fig.b we can write, 

     VTh =  ILRTh + VL  

Or,     VL =   ILRTh + VTh  (8) 

Eqn.8 represents a straight line. Thus the graph 

between IL and VL is a straight line with slope equal 

to RTh and the Y intercept VTh.  

To verify the Thevenin’s theorem we show that 

the value of VTh and RTh obtained by the calculation 

method and the graphical method are same as those 

obtained by the direct measurement. 

Measurement of VTh: Thevenin voltage VTh can be 

measured directly from the 

open circuit shown in fig.c.  

Measurement of RTh: We 

use the circuit as shown in 

fig.f for the measurement of 

RTh. The same power 

supply used in fig.a is used 

here. Send a current I 

through the circuit. Measure 

R2 r R1 C 

R3 

D Fig.d: Calculation of RTh 

RTh 

R2 r R1 C 

R3 

D 

E 

Fig.c: Calculation of VTh 

I I 

VTh 

IL 

VL 

VTh 

Fig.e 

R2 

r 

R1 C 

R3 

D Fig.f: Determination of RTh 

I 

V 

E 

r R 

V 
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the voltages V and V, respectively, across R and CD. 

Then, 

        V =   IRTh 

        V =  IR        

           
V

V
 =  ThIR

IR
 =  ThR

R
   

                    RTh = 
VR

V




   (9) 

Norton’s theorem: It states that a two terminal 

network containing resistances (linear impedances) and 

voltage sources can be replaced by a single current 

source IS, in parallel with a single resistance RS, where, 

IS is the short circuit current between the terminals and 

RS is the resistance that would be measured between 

the terminals with all the voltage sources are replaced 

by their internal resistances. 

The network is shown in the fig.a. Its Norton’s 

equivalent is shown in the fig.i.  

     Current through RN  =  L

N

V

R
  

From the fig.i, 

        IL =  L
N

N

V
I

R
    (10) 

Thus the graph between VL and IL is a straight line with 

slope equal to 
N

1

R
  and the Y intercept IN.  By eqn.7 

      RN =  RTh =  
 1 3

2

1 3

R r R
R

r R R




 
 

Calculation of IN: Let I be the main 

current in the circuit with the terminals 

short circuited as shown in fig.k. From the 

fig.k, 

      N 3I I R  =  N 2I R  

                     I =  
 N 2 3

3

I R R

R


 

Also,           E =   1 N 2I r R I R   
 

   =  
  N 2 3 1

N 2

3

I R R r R
I R

R

 
  

r 

C 

D 
Fig.g: Equivalent circuit of fig.f 

I 

V 

E 

R 

V 

RTh 

I 

RL 

C 

RN 

D 

Fig.i: Norton’s equivalent circuit 

IN 

IL INIL 

VL 

VL 

IL 

IN 

Fig.j 

R2 r R1 C 

R3 

D 

E 

Fig.k: Determination of IN 

I 

IN 

IIN 

A 
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         IN =  
  

3

1 2 3 2 3

ER

R r R R R R  
       (11) 

To verify the Norton’s theorem we show that the value of IN and RN obtained by the 

calculation method and the graphical method are same as those obtained by the direct 

measurement. (Remember RN is same as RTh) 
 

Procedure:  

Step 1: Determination of internal resistance ‘r’ of power supply 

Measure the open circuit voltage E (=1015 volt) of the power 

supply. Connect a suitable resistance R, say 10  as shown in fig.m 

and measure the terminal voltage Vt.  
 

           I =  
E

R r
 =  tV

R
 

         r =  
 t

t

E V R

V


 

Step 2: Theoretical calculation of VTh, RTh and IN 

Step 3: Experimental verification - by graphical method 

The connections are made as 

shown in fig.a. (Do not connect ‘r’, since 

it is the internal resistance of the power 

supply). Take suitable resistances in the 

boxes R1, R2, R3 and RL. Measure the 

load voltage and current. Change the 

load resistance and in each case the VL 

and IL are noted.  

For the verification of Thevenin’s 

theorem draw a graph between VL and 

the calculated (or measured) current IL.  Find out VTh and RTh from graph and compare it with 

the calculated values.   

To verify the Norton’s theorem draw another graph between the measured current IL and 

the load voltage VL (calculated or measured). Find out IN and RN (= RTh) from the graph. 

Compare it with the calculated values. 

Step 4: Experimental verification - by direct measurement method  

Now the two terminals C and D are made open as shown in fig.c and the voltage across it is 

measured. This open circuit voltage directly gives the Thevenin voltage VTh. Compare it with the 

previous results (calculation and graphical). 

Then connect an ammeter in between C and D as shown in fig.k and measure the short 

circuited current. (Remember ‘r’ is the internal resistance not an externally connected one). This 

directly gives the Norton’s current. Compare it with the previous results. 

To measure directly RTh or RN, connections are made as shown in fig.f. In this case ‘r’ 

should be connected. Measure the voltage V between C D and voltage V across R. Calculate 

RTh using eqn.9. Compare the result with the previous results.   

R2 

RL 

r R1 C 

R3 

D 

E  

Fig.a: Network of resistances and a voltage source 

I IL IIL 

V 

A 

+ 

+ 

 

 

R 

r 

E 

Fig.m 

V 

+ 

 

I 
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 Power supply voltage E must be kept constant throughout the experiment. So use 

regulated power supply 

 Ensure that all the unplugged keys of the resistance boxes are tightened. 

 Formula for theoretical calculation is applicable only for the ‘T’ type network given in 

the figure. It is different for different networks. 
  

Observation and Tabulation 

Measurement of internal resistance of the power supply 

  Open circuit voltage of the power supply,           E =  ……..volt 

 Value of resistance connected to the power supply,          R =  ……. Ohm 

 Terminal voltage (voltage across R),          Vt =  ……. Volt 

  Internal resistance,  r =  
 t

t

E V R

V


  =  …….. ohm 

Theoretical calculation of VTh, RTh = RN and IN 

 

R1 

 

R2  

 

R3 

3
Th

1 3

ER
V

r R R


 
 

volt 

RTh =
 1 3

2

1 3

R r R
R

r R R




 
 

 

IN = 
  

3

1 2 3 2 3

ER

R r R R R R  
 

Ampere 

      

      

      

  

Measurement of load voltage and load current 

   

 

Sl.No. 

 

Load resistance 

RL  

For verification of Thevenin’ theorem For Norton’s theorem 

Load voltage  

volt 

Mean 

VL 

volt 

Calculated 

current 

IL ampere 

Load current 

ampere 

Mean 

IL 

ampere 1 2 1 2 

1         

2         

3         

4         

5         

6         

7         

8         

9         

10         
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Graphical verification 

 Thevenin voltage,         VTh  = Y intercept of VL-IL graph =  ……… volt 

 Thevenin resistance,    RTh = Slope of the VL-IL graph =  ……… ohm 

 Norton’s current,    IN = Y intercept of IL-VL graph =  ……… ampere 

Experimental verification - by direct measurement method 

 Thevenin voltage,         VTh  =   Open circuit voltage =  ……… volt 

 Norton’s current,    IN =  Short circuited current =  ……… ampere 

Determination of RTh 

Sl.No. R Voltage across the 

terminals C D, V volt 
Voltage across R 

V volt 
RTh = 

VR

V




  

1     

2     

3     

4     

5     

 

 

Result 

  Thevenin voltage, VTh 

  By calculation   =  ……… volt 

  By graphical method  =  ……… volt 

  By direct measurement =  ………. volt 

 Thevenin resistance, RTh 

  By calculation   =  ……… ohm 

  By graphical method  =  ……… ohm 

  By direct measurement =  ……… ohm 

 Norton current, IN 

  By calculation   =  ……… ampere 

  By graphical method  =  ……… ampere 

  By direct measurement =  ……… ampere 

 Since the values obtained for VTh, RTh and IN by different methods are nearly equal 

Thevenin’s and Norton’s theorem are verified. 

 


