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BSc (Physics): Core III - Theory 

 3B03PHY: Allied physics 

Semester-3, Credit-3, Contact hours -54, Max. Ext. Marks- 40, Max. Int. marks-10 

  Module 1: Solid State Physics 
 
 Crystal structure:-Introduction- crystal lattice and translation vectors- unit cell-basis-
symmetry operations–point groups and space groups(qualitative) - types of lattices - Bravais 
lattices–lattice directions and planes-Miller indices-inter planar spacing for orthogonal 
lattice(no derivation)-simple crystal structures-close packed structures-loose packed 
structures-structure of diamond –structure of sodium chloride 
 
X-ray diffraction:– Bragg’s law –X-ray diffraction methods-Laue’s method- Powder crystal 
method- powder method( Book 1,Chapter1,2)      14hrs;   Marks: Minimum 12. 
 
Module 2: Properties of matter  

 Elasticity:- Stress, strain, elastic constants, Poisson’s ratio relation connecting various elastic 

constants- angle of twist and angle of shear – twisting couple on a cylindrical rod of wire –

torsion pendulum- Bending of beams –expression for bending moments-cantilever- expression 

for depression –beam supported at its ends and loaded in the middle-expression for depression 

–stiffness of a beam 

Hydrodynamics: Streamline and turbulent flows-tubes of flow and equation of continuity-
energy possessed by a liquid- Bernoulli’s theorem-practical applications-Torricelli’s theorem 
 
Viscosity:-critical velocity-flow of liquid through a capillary tube (Poiseulle’s formula)-Stokes 
formulae.  
 
Surface tension:-surface energy-expression for excess pressure on a curved surface -
measurement of surface tension by capillary tube method ( Book 2-Chapters 12,14,15,16) 
 

                                                     22hrs;   Marks: Minimum 14 
Module 3: Electricity  

DC Network theorems:-Kirchoff’s laws –voltage and current sources-source conversion- 

superposition theorem- Maximum power transfer theorem- reciprocity theorem- Thevenin’s 

and Norton’s theorems –equivalent circuits-star/delta ,delta/star transformations 

Transients and ac circuits:- Charging and discharging of capacitor- time constants-ac through 

R,L and C-choke coil-skin effect-ac through LR, CR and LCR series and parallel circuits- 

resonance-power in ac circuits-power factor(Book 3,Chapters 2,5,10,11,13.)                                                                                             

                                                     18hrs; Marks: Minimum 14 

Books for study: 

1. Solid state Physics,  R.K.Puri, V.K. Babbar, S. Chand and Company  



SOLID STATE 
 PHYSICS



Solid State Physics - Lecture 1

States of Matter

Solid: atoms are packed together in a rigid structure with short-
or long-range order (more later). 
As the solid is heated up, the atoms oscillate around their 
equilibrium positions but retain a rigid structure.

Liquid: atoms are closely packed but do not form a rigid 
structure. As the liquid is heated up the atoms move around 
but without clear relation to one another.

Gas: atoms are located far away from each other (a much 
lower density than for a liquid or gas) with little interaction 
with each other. As the gas is heated up the atoms become 
more energetic, increasing the probability of collision. 

(also  plasmas,  but  we  won’t  worry  about  those  here…)
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Solid, Liquid & Gas



Solid State Physics - Lecture 1

What is a Solid?

Could be a bulk composite with weakly bonded 
constituents. The atomic arrangement is completely 
random. Such materials are relatively weak, and are poor 
thermal and electrical conductors (e.g. wood).

In amorphous solids there may be short 
range order between atoms but the atoms 
do not overall form a periodic structure. 
The atoms themselves are at equilibrium 
spacing (e.g. glasses)

In crystalline solids the atoms form a periodic 
structure and there is long range order in the position 
of the atoms (e.g. metals, diamond, silicon etc.). 
More than 90% of solids form crystalline structures.
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Crystalline & Amorphous



■ Single crystal has an atomic structure that repeats 
periodically across its whole volume. Even at infinite length 
scales, each atom is related to every other equivalent atom 
in the structure by translational symmetry

■ Poly crystal is a material made up of an aggregate of many 
small single crystals (also called crystallites or grains).  

■ Polycrystalline material have a high degree of order over many 
atomic or molecular dimensions. 

■ These ordered regions, or single crystal regions, vary in size 
and orientation wrt one another. 

■ These regions are called as grains ( domain) and are 
separated from one another by grain boundaries. The atomic 
order can vary from one domain to the next. 

■ The grains are usually 100 nm - 100 microns in diameter. Poly 
crystals with grains that are <10 nm in diameter are called nano 
crystalline  

  

Single crystalline & Poly crystalline



Solid State Physics - Lecture 1

Crystal Structures

An ideal crystal is constructed from an infinite repetition of identical groups of atoms

• The group is known as the basis (this will contain one or more atoms)

• The set of points on which the basis sits is called the lattice                              
(a mathematical construction)

Solid State Physics - Lecture 1

Crystal structure = lattice + basis
Element A

Element B

Basis

a1

a2

The position of the centre of an atom/ion j relative to the lattice point is:

lattice 
point

Lattice 
translation 

vectors

rj

For blue atom/ion:

For red atom/ion:

2aar 1j jj yx � 

0 jr

In 3D: 32 aaar 1j jjj zyx �� 

1,,0 dd jjj zyx(Usual to define                                     )

Crystal Lattice



Translation vectors

T

T = n1 a + n2 b + n3 c



■ The smallest component of the crystal (group of atoms, 
ions or molecules), which when stacked  together with 
pure translational repetition reproduces the whole crystal.

Crystal Structure 46

2D-Crystal 

Unit Cell 

Unit Cell in 2D

■ The smallest component of the crystal (group of atoms, 
ions or molecules), which when stacked  together with 
pure translational repetition reproduces the whole crystal.

S
a

b

S

S

S

S

S

S

S
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S
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S
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Crystal Structure 47

2D-Crystal 

Unit Cell in 2D

■ The smallest component of the crystal (group of atoms, 
ions or molecules), which when stacked  together with 
pure translational repetition reproduces the whole crystal.

S

S

The choice of  
 unit cell   

is not unique.

a

Sb

S

Crystal Structure 50

This is also a unit cell -  
it doesn’t matter if you start from Na or Cl

Crystal Structure 51

- or if you don’t start from an atom

Crystal Structure 52

This is NOT a unit cell even though they are all the 
same - empty space is not allowed!

Crystal Structure 53

In 2D, this IS a unit cell  
In 3D, it is NOT

Unit Cell & Primitive Cell



Solid State Physics - Lecture 1

Primitive cell & uniqueness (2D)

a1

a2

a1

a2 a1 a2

In 2D case primitive basis set when                   is minimised

A primitive cell contains 1 lattice point!

A primitive cell can be defined in more than one way

21 aa u

Solid State Physics - Lecture 1

2D lattice

Wigner-Seitz Primitive Cell (2D)
Define  a  primitive  cell  by  bisecting  lines  connecting  lattice  points…
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2D lattice

Define  a  primitive  cell  by  bisecting  lines  connecting  lattice  points…

Weigner- Seitz Primitive Cell



Symmetry Operations 

A symmetry operation is that transforms the crystals to itself,  
ie, a crystal remains invariant under a symmetry operation 

1. Translations 2. Rotations  3. Reflections 4. Inversions

Translations r’ = r + T



Rotations
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that results in no change in the appearance of an object.  Again it is emphasized that in crystals,

the symmetry is internal, that is it is an ordered geometrical arrangement of atoms and

molecules on the crystal lattice.  But, since the internal symmetry is reflected in the external

form of perfect crystals, we are going to concentrate on external symmetry, because this is what

we can observe. 

There are 3 types of symmetry operations: rotation, reflection, and inversion.  We will look at

each of these in turn.

Rotational Symmetry

As illustrated above, if an object can be rotated about an axis and repeats itself every 90
o
 of

rotation then it is said to have an axis of 4-fold rotational symmetry.  The axis along which the

rotation is performed is an element of symmetry referred to as a rotation axis.   The following

types of rotational symmetry axes are possible in crystals.

1-Fold Rotation Axis - An object that requires rotation

of a full 360
o
 in order to restore it to its original

appearance has no rotational symmetry.  Since it repeats

itself 1 time every 360
o
 it is said to have a 1-fold axis of

rotational symmetry.

 

2-fold Rotation Axis - If an object appears

identical after a rotation of 180
o
, that is twice

in a 360
o
 rotation, then it is said to have a 2-

fold rotation axis (360/180 = 2).  Note that in

these examples the axes we are referring to

are imaginary lines that extend toward you

perpendicular to the page or blackboard.  A

filled oval shape represents the point where

the 2-fold rotation axis intersects the page.  

This symbolism will be used for a 2-fold rotation axis throughout the lectures and in your

text.

3-Fold Rotation Axis- Objects that repeat themselves

upon rotation of 120
o
 are said to have a 3-fold axis of

rotational symmetry (360/120 =3), and they will

repeat 3 times in a 360
o
 rotation.  A filled triangle is

used to symbolize the location of 3-fold rotation axis.

 

4-Fold Rotation Axis  - If an object repeats itself

after 90
o
 of rotation, it will repeat 4 times in a 360

o

rotation, as illustrated previously.  A filled square is

used to symbolize the location of 4-fold axis of

rotational symmetry.
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6-Fold Rotation Axis - If rotation of 60
o
 about

an axis causes the object to repeat itself, then it

has 6-fold axis of rotational symmetry

(360/60=6).  A  filled hexagon is used as the

symbol for a 6-fold rotation axis. 

 

Although objects themselves may appear to have 5-fold, 7-fold, 8-fold, or higher-fold rotation

axes, these are not possible in crystals.  The reason is that the external shape of a crystal is

based on a geometric arrangement of atoms.  Note that if we try to combine objects with 5-fold

and 8-fold apparent symmetry, that we cannot combine them in such a way that they

completely fill space, as illustrated below.

Mirror Symmetry

A mirror symmetry operation is an imaginary operation that can be performed to reproduce an

object.  The operation is done by imagining that you cut the object in half, then place a mirror

next to one of the halves of the object along the cut.  If the reflection in the mirror reproduces

the other half of the object, then the object is said to have mirror symmetry.  The plane of the

mirror is an element of symmetry referred to as a mirror plane, and is symbolized with the

letter m.  As an example, the human body is an object that approximates mirror symmetry, with

the mirror plane cutting through the center of the head, the center of nose and down to the

groin.

The rectangles shown below  have two planes of mirror symmetry.

 

The rectangle on the left

has a mirror plane that runs

vertically on the page and

is perpendicular to the

page.  The rectangle on the

right has a mirror plane that

runs horizontally and is

perpendicular to the page. 

The dashed parts of the

rectangles below show the

part the rectangles that

 𝚹    =         2∏   
                  n

Rotational symmetry is expressed as a whole number (n) 
between 1 and ���Q refers to the number of times a motif 

is repeated during a complete 360° rotation.

2

1

4

3

6

�



𝚹 𝚹

a

a

a Cos 𝚹 a Cos 𝚹 
a

m*a  = a+2a Cos 𝚹  
Where m = 0, ±1, ±2,  ±3,… 

N =  2Cos 𝚹  
Where N = 0, ±1, ±2,  ±3,… 

N Cos 𝚹 𝚹 n

-2 -1 180 2
-1 -1/2 120 3
0 0 90 4

+1 +1/2 60 6
+2 +1 360 1

“ 5 fold rotational symmetry is not Possible…” 



Reflection versus Inversionm

Let us look at this purely in 2 
dimensions.

Reflection of a 2-dimensional object 
occurs across a plane (m)

After inversion everything is 
an equal and opposite 

distance through a single 
point i.

Results in congruent pairs.

i

Reflections



An inversion (i) produces an inverted object 
through an inversion center.

Draw lines from every point on the object through 
the inversion center and out an equal distance 
on the other side.

i Is the operation 
congruent, or does 
it create an 
enantiomorphic 
pair?

An inversion (i) produces an inverted object 
through an inversion center.

Draw lines from every point on the object through 
the inversion center and out an equal distance 
on the other side.

i Is the operation 
congruent, or does 
it create an 
enantiomorphic 
pair?

Inversions

Reflection versus Inversionm

Let us look at this purely in 2 
dimensions.

Reflection of a 2-dimensional object 
occurs across a plane (m)

After inversion everything is 
an equal and opposite 

distance through a single 
point i.

Results in congruent pairs.

i



The combining of the single operations, rotation 
and inversion, generates a rotoinversion 
operation.

1 (= i)

This may be viewed in one of two ways.
Either, think of the diagram as two 
independent objects, a right hand in the 
upper hemisphere, and a left hand in the 
lower hemisphere.

The rotoinversion is the symmetry 
operation required to transpose one 
object onto the other.

In this operation, rotate the hand through 
360° and invert.

NOTE: 2D inversion results in congruent pairs.
3D roto-inversion in enantiomorphic pairs.

360°



Point Groups 
A crystallographic point group is a set of symmetry operations, like rotations or 
reflections, that leave a point fixed while moving each atom of the crystal to the 
position of an atom of the same kind. 

Space Groups 
The space group of a crystal is a mathematical description of the symmetry 
inherent in the structure. The space groups in three dimensions are made from 
combinations of the 32 crystallographic point groups with the 14 Bravais lattices 
which belong to one of 7 crystal systems. 

Bravais lattice 
A crystal is made up of one or more atoms (the basis) which is repeated at each 
lattice point. The crystal then looks the same when viewed from any of the lattice 
points. In all, there are 14 possible Bravais lattices that fill three-dimensional space.



2D Lattice 
4 Crystal Systems and 5 Bravais Lattices 

1. Oblique 
2. Rectangular 
3. Square 
4. Hexagonal
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Not all combinations of lattice systems and lattice types are needed to describe all of the possible lattices. If
we consider R equivalent to P, then there are in total 7 × 6 = 42 combinations, but it can be shown that
several of these are in fact equivalent to each other. For example, the monoclinic I lattice can be described
by a monoclinic C lattice by different choice of crystal axes. Similarly, all A- or B-centred lattices can be
described either by a C- or P-centering. This reduces the number of combinations to 14 conventional
Bravais lattices, shown in the table below. The rhombohedral lattice is officially assigned as type R in order
to distinguish it from the hexagonal lattice in the trigonal crystal system. However, for simplicity this lattice
is often shown as type P.

The 7 lattice systems The 14 Bravais lattices

Triclinic

P

Monoclinic

P C

Orthorhombic

P C I F

Tetragonal

P I

Rhombohedral

R or P
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Hexagonal

P

Cubic

P (pcc) I (bcc) F (fcc)

The volume of the unit cell can be calculated by evaluating a · b × c where a, b, and c are the lattice vectors.
The volumes of the Bravais lattices are given below:

Lattice system Volume

Triclinic

Monoclinic
Orthorhombic
Tetragonal

Rhombohedral

Hexagonal

Cubic

Centred Unit Cells :

7 Crystal Systems and 14 Bravais Lattices 

1 

2 

3 

4

5

6

7

1. Triclinic 
2. Monoclinic 
3. Orthorhombic 
4. Tetragonal 
5. Rhombohedral 
6. Hexagonal 
7. Cubic

3D Lattice 



7 Crystal Systems

P - Primitive 
I- Body centered 
C- Base centered 
F- Face centered

P,I,F P,I, 

P P,C 

P,C,I,F P 

P 



(h k l ) 

❑ Miller indices are used to specify directions and planes. 
❑ These directions and planes could be in lattices or in crystals.

Lattice Directions and Planes









Angle between Planes

6/16/2015 Calculating Angle between 2 Planes

http://www.matter.org.uk/diffraction/electron/calculating_angle_between_2_planes.htm 1/1

  

        MATTER  |  Diffraction  |  Site  Map  |  Help  |  Contact  us  |  Glossary  |  About   
  

         [  Previous  ]  [  Continue  ]

RATIO  TECHNIQUE    Calculating  Angle  between  2  Planes      2  of  3

  

Calculating  the  angle  between  two  planes

For  cubic  crystals,  the  angle,  f  between  two  planes,  (h1  k1  l1)  and  (h2  k2  l2)  is  given  by:

Example:

Calculate  the  angle  between  the  (111)  and  (200)  planes.

From  the  above,

which  produces  the  result,  f  =  54.75°.

Return  to  Ratio  Technique  page...
  

  

     Introduction    |  Geometry  |  Intensity  |  X-­ray  Diffraction  |  Electron  Diffraction  

  

   ©  2000  MATTER,     The  University  of  Liverpool.  All  rights  reserved.
           contact  us      Last  updated:  July  25,  2000   commercial  information

  

  

6/16/2015 Calculating Angle between 2 Planes

http://www.matter.org.uk/diffraction/electron/calculating_angle_between_2_planes.htm 1/1

  

        MATTER  |  Diffraction  |  Site  Map  |  Help  |  Contact  us  |  Glossary  |  About   
  

         [  Previous  ]  [  Continue  ]

RATIO  TECHNIQUE    Calculating  Angle  between  2  Planes      2  of  3

  

Calculating  the  angle  between  two  planes

For  cubic  crystals,  the  angle,  f  between  two  planes,  (h1  k1  l1)  and  (h2  k2  l2)  is  given  by:

Example:

Calculate  the  angle  between  the  (111)  and  (200)  planes.

From  the  above,

which  produces  the  result,  f  =  54.75°.

Return  to  Ratio  Technique  page...
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Interplanar Spacing



Packing Fraction (f)

f   =  
Volume occupied by the atoms present  

in the unit cell

Total Volume of the unit cell



Simple Crystal Structures 

Close - Packed Structures

Hexagonal close-packed (hcp) Face centred cubic (fcc)
ABABAB…. ABCABCABC….

12 atoms at corners 
2 atoms at centres of basal plane 
3 atoms completely inside the hexagon 
Effective number of atoms  
= 12(1/6)+2(1/2)+3=6

f = 0.74 

Mg, Z, Cd, Ti

8 atoms at corners 
6 atoms at the face centres 
Effective number of atoms  
= 8(1/8)+6(1/2) = 4

f = 0.74 

Cu, Ag, Au, Al

4r = √2aCoordination number =12 Coordination number =12 



Loose- Packed Structures

Solid State Physics - Lecture 1

Cubic systems – unit cells

Simple cubic
(sc)

Body-centred cubic
(bcc)

Face-centred cubic
(fcc)

NB: Only sc is primitive since it contains one lattice point
Q. How many lattice points are contained in a bcc (2) and fcc unit cell? (4)
Q. What are basis vectors for each structure?

a = 2r
f = 0.52

8 atoms at corners 
Effective number of atoms  
= 8(1/8)=1

Coordination number =6 

Simple cubic Body Centred

4r = √3a
f = 0.68

Na, K ,Mo, W Polonium (Po)

8 atoms at corners 
1 atoms at body centre 

Effective number of atoms  
= 8(1/8) +1=2

Coordination number =8 





Structure of Diamond

Exhibits both cubic and hexagonal type structures. Diamond cubic  
structure is more common.

It is formed by carbon atoms. 
Every carbon atom is surrounded by four other carbon atoms situated at the  
corners of regular tetrahedral  by the covalent linkages. 
The diamond cubic structure is a combination of two interpenetrating FCC sub lattices  
displaced along the body diagonal of the cubic cell by 1/4th length of that diagonal. 
Thus the origins of two FCC sub lattices lie at (0, 0, 0) and (1/4, 1/4,1/4)
No. of atoms contributed by the corner atoms to an unit cell is 8×(1/8) =1. 
No. of atoms contributed by the face centred atoms to the unit cell is 6 × (1/2)  = 3 
There are four more atoms inside the structure.
No.of atoms present in a diamond cubic unit cell is 1 + 3 + 4 = 8
The co-ordination number is 4



Structure of Sodium Chloride

Face centered cubic (fcc)

Coordination no of Na = 6; 
Coordination no of Cl = 6. 

For an fcc lattice there are 4 lattice points per cell, 
Therefore the cell contents are 
4 Na cations and 4 Cl anions.



X-ray crystallography

Study of atomic and molecular structure of a crystal by using X-ray diffraction technique

By measuring the angles and intensities of these diffracted beams, a crystallographer 
can produce a three-dimensional picture of the density of electrons within the crystal.
From this electron density, the mean positions of the atoms in the crystal can be 
determined.

Why X ray ?

Wavelength is in the order of 0.1 nm



1912

Max Theodor Felix Laue

“Crystals act as a space grating”

Laue pattern
Zinc blende

Proved that X-rays are electromagnetic radiation

Transmission Method Back-reflection Method



Bragg’s Law

n𝜆 = 2d sin𝛉

William Bragg 



Bragg’s X-ray Spectrometer

n=1,   𝜆=2d sin𝜽1 

n=2,   𝜆=2d sin𝜽2 

n=3,   𝜆=2d sin𝜽3, etc

sin𝜽1  : sin𝜽2  : sin𝜽3 = 1 : 2: 3

sin𝜽1           sin𝜽2            sin𝜽3
:1 : 11 = d100 : d110 : d111
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For example (222) direction peak is actually the the 2nd order (n=2) diffraction peak of the (111) plane. 8
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X -ray Diffraction Methods
X-RAY DIFFRACTION METHODS

X-Ray Diffraction Method

Laue Rotating Crystal Powder

Orientation
Single Crystal

Polychromatic Beam
Fixed Angle

Lattice constant
Single Crystal

Monochromatic Beam
Variable Angle

Lattice Parameters
Polycrystal (powdered)
Monochromatic Beam

Variable Angle



Laue methodLAUE METHOD

| The Laue method is mainly used to determine the
orientation of large single crystals while radiation is
reflected from, or transmitted through a fixed crystal.

| The diffracted beams form arrays of
spots, that lie on curves on the film.

| The Bragg angle is fixed for every
set of planes in the crystal. Each set
of planes picks out and diffracts the
particular wavelength from the
white radiation that satisfies the
Bragg law for the values of d and ǉ
involved.



BACK-REFLECTION LAUE METHOD

| In the back-reflection method, the film is placed between the 
x-ray source and the crystal. The beams which are diffracted in 
a backward direction are recorded. 

| One side of the cone of Laue
reflections is defined by the
transmitted beam. The film
intersects the cone, with the
diffraction spots generally
lying on an hyperbola.

X-Ray Film

Single
Crystal

Transmission Laue Method

| In the transmission Laue method, the film is placed
behind the crystal to record beams which are
transmitted through the crystal.

| One side of the cone of Laue
reflections is defined by the
transmitted beam. The film
intersects the cone, with the
diffraction spots generally
lying on an ellipse.

X-Ray
FilmSingle

Crystal



CRYSTAL STRUCTURE
DETERMINATION BY LAUE METHOD

| Therefore, the Laue method is mainly used to determine
the crystal orientation.

| Although the Laue method can also be used to determine
the crystal structure, several wavelengths can reflect in
different orders from the same set of planes, with the
different order reflections superimposed on the same spot
in the film. This makes crystal structure determination
by spot intensity diffucult.

| Rotating crystal method overcomes this problem. How?



ROTATING CRYSTAL METHOD

| In the rotating crystal method, a
single crystal is mounted with
an axis normal to a
monochromatic x-ray beam.
A cylindrical film is placed
around it and the crystal is
rotated about the chosen axis.

| As the crystal rotates, sets of lattice planes will at some
point make the correct Bragg angle for the monochromatic
incident beam, and at that point a diffracted beam will be
formed.

Rotating Crystal method



The reflected beams are located on the surface of
imaginary cones. By recording the diffraction patterns (both
angles and intensities) for various crystal orientations, one
can determine the shape and size of unit cell as well as
arrangement of atoms inside the cell.

Film

ROTATING CRYSTAL METHOD



THE POWDER METHOD

If a powdered specimen is used, instead of a single
crystal, then there is no need to rotate the
specimen, because there will always be some
crystals at an orientation for which diffraction is
permitted. Here a monochromatic X-ray beam is
incident on a powdered or polycrystalline sample.

This method is useful for samples that are difficult
to obtain in single crystal form.

Powder Diffraction Method



The powder method is used to determine the value
of the lattice parameters accurately. Lattice parameters
are the magnitudes of the unit vectors a, b and c which
define the unit cell for the crystal.

For every set of crystal planes, by chance, one or
more crystals will be in the correct orientation to give
the correct Bragg angle to satisfy Bragg's equation.
Every crystal plane is thus capable of diffraction. Each
diffraction line is made up of a large number of small
spots, each from a separate crystal. Each spot is so
small as to give the appearance of a continuous line.

THE POWDER METHOD



Powder Diffraction

By scanning the sample through a range of 2θangles, all possible diffraction  
directions of the lattice should be attained due to the random orientation of the powdered  
material. Conversion of the diffraction peaks to d-spacings allows identification of the  
mineral because each mineral has a set of unique d-spacings.

X-ray tube 
Sample holder 
X-ray detector.

X-rays are collimated and directed onto the sample. As the sample and detector are rotated,  
the intensity of the reflected X-rays is recorded. When the geometry of the incident X-rays 
impinging the sample satisfies the Bragg Equation, constructive interference occurs and  
a peak in intensity occurs. A detector records and processes this X-ray signal 

Rapid analytical technique primarily  
used for phase identification of a crystalline material  
and can provide information on unit cell dimensions. 



The powder method is used to determine the value of the lattice parameters accurately.








