BSc (Physics): Core III - Theory

3BO3PHY: Allied physics
Semester-3, Credit-3, Contact hours -54, Max. Ext. Marks- 40, Max. Int. marks-10

Module 1: Solid State Physics

Crystal structure:-Introduction- crystal lattice and translation vectors- unit cell-basis-
symmetry operations—point groups and space groups(qualitative) - types of lattices - Bravais
lattices—lattice directions and planes-Miller indices-inter planar spacing for orthogonal
lattice(no derivation)-simple crystal structures-close packed structures-loose packed
structures-structure of diamond —structure of sodium chloride

X-ray diffraction:— Bragg’s law —X-ray diffraction methods-Laue’s method- Powder crystal
method- powder method( Book 1,Chapterl,2)  14hrs; Marks: Minimum 12.

Module 2: Properties of matter

Elasticity:- Stress, strain, elastic constants, Poisson’s ratio relation connecting various elastic
constants- angle of twist and angle of shear — twisting couple on a cylindrical rod of wire —
torsion pendulum- Bending of beams —expression for bending moments-cantilever- expression
for depression —beam supported at its ends and loaded in the middle-expression for depression
—stiffness of a beam

Hydrodynamics: Streamline and turbulent flows-tubes of flow and equation of continuity-
energy possessed by a liquid- Bernoulli’s theorem-practical applications-Torricelli’s theorem

Viscosity:-critical velocity-flow of liquid through a capillary tube (Poiseulle’s formula)-Stokes
formulae.

Surface tension:-surface energy-expression for excess pressure on a curved surface -
measurement of surface tension by capillary tube method ( Book 2-Chapters 12,14,15,16)

22hrs; Marks: Minimum 14
Module 3: Electricity

DC Network theorems:-Kirchoff’s laws —voltage and current sources-source conversion-
superposition theorem- Maximum power transfer theorem- reciprocity theorem- Thevenin’s
and Norton’s theorems —equivalent circuits-star/delta ,delta/star transformations

Transients and ac circuits:- Charging and discharging of capacitor- time constants-ac through
R,L and C-choke coil-skin effect-ac through LR, CR and LCR series and parallel circuits-
resonance-power in ac circuits-power factor(Book 3,Chapters 2,5,10,11,13.)

18hrs; Marks: Minimum 14
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Solid: atoms are packed together in a rigid structure with short-
or long-range order (more later).

~As the solid is heated up, the atoms oscillate around their
equilibrium positions but retain a rigid structure.

Liquid: atoms are closely packed but do not form a rigid
structure. As the liquid is heated up the atoms move around
but without clear relation to one another.

() no fixed shape
() fixed volume

| . ' Gas: atoms are located far away from each other (a much
- @ no fixed shape  lower density than for a liquid or gas) with little interaction
O no fixed volume With each other. As the gas is heated up the atoms become
- more energetic, increasing the probability of collision.

Lan be squashed




In crystalline solids the atoms form a periodic

structure and there is long range order in the position
~ of the atoms (e.g. metals, diamond, silicon etc.). '
 More than 90% of solids form crystalline structures.

Crystalline solid
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In amorphous solids there may be short
range order between atoms but the atoms
do not overall form a periodic structure.
The atoms themselves are at equilibrium
spacing (e.g. glasses)




Single crystalline & Poly crystalline

Amorphous

= Single crystal has an atomic structure that repeats

periodically across its whole volume. Even at infinite length
scales, each atom is related to every other equivalent atom
In the structure by translational symmetry

Poly crystal is a material made up of an aggregate of many
small single crystals (also called crystallites or grains).

Polycrystalline material have a high degree of order over many
atomic or molecular dimensions.

These ordered regions, or single crystal regions, vary in size
and orientation wrt one another.

These regions are called as grains ( domain) and are
separated from one another by grain boundaries. The atomic
order can vary from one domain to the next.

The grains are usually 700 nm - 100 microns in diameter. Poly

crystals with grains that are <10 nm in diameter are called nano =

crystalline



An ideal crystal is constructed from an infinite repetition of identical groups of atoms
The group is known as the basis (this will contain one or more atoms)
The set of points on which the basis sits is called the lattice

(a mathematical construction)

& Crystal structure = lattice + basis

Element A

Basis

Element B







The smallest component of the crystal (group of atoms,
- ions or molecules), which when stacked together with
~ pure translational repetition reproduces the whole crystal.

S
a

Unit Cell

Crystal Structure Crystal Structure

The choice of
unit cell
is not unique.
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A primitive cell contains 1 lattice point!

A primitive cell can be defined in more than one way

Define a primitive cell by bisecting lines con‘n‘ec':ting‘ lattice points. ..

'2D~Iattice




~ Symmetry Operations

A symmetry operation is that transforms the crystals to itself,
le, a crystal remains invariant under a symmetry operation

1. Translations 2. Rotations 3. Reflections 4. Inversions
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. Rotations

« 1-Fold Rotation Axis - An object that requires rotation
of a full 360° in order to restore it to its original
appearance has no rotational symmetry. Since it repeats

itself 1 time every 360° it is said to have a 1-fold axis of
rotational symmetry.

e 2-fold Rotation Axis - If an object appears
identical after a rotation of 180°, that is twice

in a 360° rotation, then it is said to have a 2-

fold rotation axis (360/180 = 2). Note that in

these examples the axes we are referring to i '

are imaginary lines that extend toward you e 6-Fold Rotation Axis - 1f rotation of 60° about
perpendicular to the page or blackboard. A an axis causes the object to repeat itself, then it
filled oval shape represents the point where has 6-fold axis of rotational symmetry

the 2-fold rotation axis intersects the page. (360/60=6). A filled hexagon is used as the
N et . - symbol for a 6-fold rotation axis.

« 3-Fold Rotation Axis- Objects that repeat themselves
upon rotation of 120° are said to have a 3-fold axis of
rotational symmetry (360/120 =3), and they will

repeat 3 times in a 360° rotation. A filled triangle is
used to symbolize the location of 3-fold rotation axis.

e 4-Fold Rotation Axis - If an object repeats itself

after 90° of rotation, it will repeat 4 times in a 360°
rotation, as illustrated previously. A filled square is
used to symbolize the location of 4-fold axis of
rotational symmetry.




e

_ “5 fold rotational symmetry is not Possible...”

aCOSO

~ m¥*a = a+2a Cos 0
Wherem O il ﬂ:2 3,‘...

e - N= ZCOSG X
WhereN O il i2 j_F3;,l,;_







An /nversion (1) produces an inverted obJect
through an /nversion center. :

Draw lines from every pomt on the object through
the inversion center and out an equal distance
on the other side.




_The cOmbmmg of the single operations, rotation
“and inversion, -generates a rotoinversion




Bravais lattice

A crystal 1s made up of one or more atoms (the basis) which 1s repeated at each
lattice point. The crystal then looks the same when viewed from any of the lattice
points. In all, there are 14 possible Bravais lattices that fill three-dimensional space.

Point Groups

A crystallographic point group 1s a set of symmetry operations, like rotations or
reflections, that leave a point fixed while moving each atom of the crystal to the
position of an atom of the same kind.

Space Groups

The space group of a crystal 1s a mathematical description of the symmetry
inherent in the structure. The space groups in three dimensions are made from
combinations of the 32 crystallographic point groups with the 14 Bravais lattices
which belong to one of 7 crystal systems.



square hexagonal oblique
a=D0b =90° a=D0b =120° a# b 4 #90F
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Triclinic

Tetragonal
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Simple cubic P|,F - Tetragonal P, Orthorhombic P,C,I,F ~ Rhombohedral Pl B Dpiprits
a:b:(* a:b:.éc a;#b_-'(-_“» a:bv:{: ,", P an't've

B o S0 e g o G B =y o0 |- Body centered
. - C-Base centered
F- Face centered

Monaoclinic P,C Triclinic P Hexagonal P
a+Fh+*c a+hFc a=b5¢
Yy¥a=8=9 aFBFyF AU a=pB=90y =120




Miller Indices (/1 4/)

[2,3,3]




Crystallographic Plangs

example a b
1. Intercepts 1 1

2. Reciprocals 11T 11 1=
1 1
Reduction 1 1

4.  Miller Indices  (110)

example a
1. Intercepts 1/2

Reciprocals 1/
2

2.
3. Reduction
4. Miller Indices  (100)
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COsg =

s =
JE I+

Example:

Calculate the angle between the (111) and (200) planes.

From the above,

(15 2)+ (1200 + (1= 0)
J1+1+14 +0+0
1
NE]

COs g =
COs g =

which produces the result, ti:= 54.75°,
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 Simple Crystal Structures

~ Close - Packed Structures

Hexagonal close-packed (hcp) Face centred cu»bic (fcc)

ABABAB.... ABCABCABC....
12 atoms at corners

2 atoms at centres of basal plane
3 atoms completely inside the hexagon :
Effective number of atoms %fge(%gﬁr garyzb)e_r Zf i
=12(1/6)+2(1/2)+3=6 S 2

Coordination number =12 Coordination number =12 @r= \2a

A C = (.
Mg, Z, Cd, Ti = “ =

8 atoms at corners
6 atoms at the face centres

Cu, Ag, Au, Al

A

Hexagonal Face
Close Packed Centered Cubic
Structure Structure
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a= - ==
e B . ¢ el
8atomsatcomers M gatoms atcorners
~  Effective number of atoms 1 atoms at body centre
E =881 . .
e Effective number of atoms
= 8(1/8) +1=2 *

| C'oor'din‘a'tion number =6 | ' Coordination number =8

Polonium (Po)

- Simple cubic Body-centred cubic
| (sc) | - (bec)




Crystal Structure

Edge length (a) and radius () are related:

| «— Ka
bee fce
b* =a* + a® b= 4r
? =a* + b? b = a* + a?
= 3q? 1672 = 242

¢ =+3a=4r a = V8r
4r

a=—

V3

Simple cubic Body-centered cubic Face-centered cubic




Structure of Diamond

Exhibits both cubic and hexagonal type structures. Diamond cubic
structure is more common.

It 1s formed by carbon atoms.

Every carbon atom is surrounded by four other carbon atoms situated at the

corners of regular tetrahedral by the covalent linkages.

The diamond cubic structure is a combination of two interpenetrating FCC sub lattices

displaced along the body diagonal of the cubic cell by 1/4th length of that diagonal.

Thus the origins of two FCC sub lattices lie at (0, 0, 0) and (1/4, 1/4,1/4)

No. of atoms contributed by the corner atoms to an unit cell 1s 8x(1/8) =1.

No. of atoms contributed by the face centred atoms to the unit cell 1s 6 x (1/2) =3

There are four more atoms inside the structure. e
No.of atoms present in a diamond cubic unitcellis 1 +3 +4 =8 \\ 7 \\f
The co-ordination number is 4 Q\\ L/
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d=5.638 A & O Coordination no of Na = 6;
Coordination no of CI = 6.

Y O %

NaQ 000 0%% %0% %%0
Cl® %00 0%0 00% %%u%

For an fcc lattice there are 4 lattice points per cell,
Therefore the cell contents are
4 Na cations and 4 Cl anions.
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Study of atomlc and molecular structure of a crystal by usmg X-ray dlffractlon technlque

By measuring the angles‘and intensities of these diffractedf beams, a crystallographer
can produce a three-dimensional picture of the density of electrons within the crystal.
From this electron denS|ty, the mean positions of the atoms in the crystal can be

determined.

Wavelength is in the order of O. nm
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William Bragg
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2d sin 6

Constructive interference
when

nA = 2d sin 6
Bragg’s Law
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Bragg angle 9 is just the half of the total angle 2& by
which the incident beam is deflected.




Incident x-ray:  along direction

wavelength A

wave vector E=2—”ﬁ nz
1 ’
fi

A scattered wave: direction #

dcos@=d-n

wavelength A

_27,
A

dcosO@+dcost =d-(A—#

=
wave vector k dcost'=-d.f

Condition for constructive interference d-(n— ﬁ,’) =mA forintegerm

Multiply 27 d -(E —I}") =27
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Equivalence of the Bragg and von Laue formulations

-

s
Suppose the incident and scatiered wave vectors k and k , satisfy the Laue condition
that (;=k —k be a reciprocal lattice vector
_— . G=
Elastic scattering: |E\ = ‘k1
It follows that }” and f make the same angle @ with the
plane perpendicular to ¢ . Therefore the scattering can be

viewed as a Bragg reflection with Bragg angle @ , from the

family of direct lattice planes perpendicular to the reciprocal
lattice vector G-

The distance between successive planes in this family must
satisfy:

=|_2
Gol="7

where G, is the shortest wave vector parallel to G

—

G mustbe an integral multipleof G, , since reciprocal lattice is a Bravais lattice
G=nG . m
¥ _ : Vi . ksin@ =—
6| =riGy| == ‘
d 27

From the figure, |é‘=2k sin @ Note that k = 7 nA=2dsin @

Bragg condition




X -ray Diffraction Methods

-

.

X-Ray Diffraction Method
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Laue Rotating Crystal Powder
Orientation Lattice constant Lattice Parameters
Single Crystal Single Crystal Polycrystal (powdered)
Polychromatic Beam Monochromatic Beam Monochromatic Beam
Fixed Angle Variable Angle Variable Angle




Laue method

o The Laue method 1s mainly used to determine the
orientation of large single crystals while radiation 1is
reflected from, or transmitted through a fixed crystal.

o The diffracted beams form arrays of
spots, that lie on curves on the film.

o The Bragg angle 1s fixed for every
set of planes i1n the crystal. Each set
of planes picks out and diffracts the
particular wavelength from the
white radiation that satisfies the
Bragg law for the values of d and O

involved.




the back-reﬂectidn method, the film 1s placed between the
ray source and the crystal. The beams which are diffracted in
ackward direction are recorded.

the transmission Laue method, the film 1s placéd
ehind the crystal to record beams which are
ansmitted through the crystal.




o Therefore, the Laue method 1s mainly used to determine
the crystal orientation.

o Although the Laue method can also be used to determine
the crystal structure, several wavelengths can reflect 1n
different orders from the same set of planes, with the
different order reflections superimposed on the same spot
in the film. This makes crystal structure determination
by spot intensity diffucult.

o Rotating crystal method overcomes this problem. How?



Rotating Crystal method

Reflected
bean

o In the rotating crystal method, a

. . . |ncident beam

single crystal iIs mounted with = \

an axis normal to a | L
: [ &

monochromatic X-ray beam. -

Colindrical
filrn

A cylindrical film is placed ‘<
around it and the crystal is Xorap source
rotated about the chosen axis.

o As the crystal rotates, sets of lattice planes will at some
point make the correct Bragg angle for the monochromatic
iIncident beam, and at that point a diffracted beam will be

formed.



The reflected beams are located on the surface of
Imaginary cones. By recording the diffraction patterns (both
angles and intensities) for various crystal orientations, one
can determine the shape and size of unit cell as well as
arrangement of atoms inside the cell.

Reflected
beam

o Cylindrical
il

13 TOUrCE Film



Powder Diffraction Method

If a powdered specimen 1s used, instead of a single
crystal, then there 1s no need to rotate the
specimen, because there will always be some
crystals at an orientation for which diffraction 1is
permitted. Here a monochromatic X-ray beam 1s
incident on a powdered or polycrystalline sample.

This method 1s useful for samples that are difficult
to obtain 1n single crystal form.



The powder method is used to determine the value
of the lattice parameters accurately. Lattice parameters
are the magnitudes of the unit vectors a, b and ¢ which
define the unit cell for the crystal.

For every set of crystal planes, by chance, one or
more crystals will be in the correct orientation to give
the correct Bragg angle to satisfy Bragg's equation.
Every crystal plane is thus capable of diffraction. Each
diffraction line is made up of a large number of small
spots, each from a separate crystal. Each spot is so

small as to give the appearance of a continuous line.



Powder Diffraction

¢ b ] .
Y-ray X-1dy
source L detector
. = -
9\4\ R =

L. Y. —a5e I
' - = 20 ;
1 Sample e f
% ~4
4 stage J
\\‘ "
\ o
)f

Rapid analytical technique primiarily
used for phase 1dentification of a crystalline material
and can provide information on unit cell dimensions.

X-ray tube
Sample holder

X-ray detector.
By scanning the sample through a range of 20angles, all possible diffraction

directions of the lattice should be attained due to the random orientation of the powdered
material. Conversion of the diffraction peaks to d-spacings allows identification of the

mineral because each mineral has a set of unique d-spacings.

X-rays are collimated and directed onto the sample. As the sample and detector are rotated,
the mtensity of the reflected X-rays 1s recorded. When the geometry of the incident X-rays

impinging the sample satisfies the Bragg Equation, constructive interference occurs and
~ a peak in intensity occurs. A detector records and processes this X-ray signal




_The powder method is used to determine the value of the I'é:ftiic‘.e' parameterséc_culrately.

 ||If a monochromatic x-ray beam is
||directed at a single crystal, then
|lonly one or two diffracted beams
may result.

~||1f the sample consists of some
. |tens of randomly orientated single
- |[crystals, the diffracted beams are
~ ||seen to lie on the surface of
~ ||lseveral cones. The cones may
~ ||lemerge in all directions, forwards
~ ||land backwards.




~ ||A sample of some hundreds of
||crystals (i.e. a powdered sample)
show that the diffracted beams
form continuous cones.

A circle of film is used to record

' ||lthe diffraction pattern as shown.
Each cone intersects the film
giving diffraction lines. The lines
are seen as arcs on the film.




- We shall now consider the powder patterns from a sample crystal. The sample is known to have a cubic
- structure, but we don't know which one. i

-~ We remove the film strip from the Debye camera after exposure, then develop and fix it. From the strip =
- of film we make measurements of the position of each diffraction line. From the results it is possible to |
~ associate the sample with a particular type of cubic structure and also to determine a value for its lattice
- parameter.

. . When the film is laid flat, §; can be measured. This is the distance along the film, from a diffraction
line, to the centre of the hole for the transmitted direct beam.

» For back reflections, I.e. where 2q > 90° you can measure 5> as the distance from the beam entry
point.

* The distance $; corresponds to a diffraction angle of 2q. The angle between the diffracted and the

- transmitted beams is always 2q. We know that the distance between the holes in the film, #,
corresponds to a diffraction angle of q = p. So we can find q from:




e We know Bragg's Law: nl = 2dsing
" and the equation for interplanar spacing, d, for cubic crystals is given by:

3

deamaee@
RN EE I E

where ¢ is the lattice parameter

this gives:

sin * @




